

Sample Chapters
Copyright © 2010 by Marco Russo and Alberto Ferrari

All rights reserved.

To learn more about this book visit:
http://go.microsoft.com/fwlink/?Linkid=200417

	 	 vii

Table of Contents
Preface .xiii

Acknowledgments . xv

Introduction . xvii

	 1 First Steps with PowerPivot . 1
Working with Classic Excel PivotTables . 2
Working with PivotTables in PowerPivot . 5

Importing Data . 6
Querying Data . 10

Summary . 15

	 2 PowerPivot at Work . 17
Using the PivotTable to Produce Reports . 17

Formatting Numbers . 19
Hiding or Removing Useless Columns . 21
Adding Calculated Columns . 24
Adding Measures . 32

Adding More Tables . 34
Working with Dates . 39
Refreshing Data . 41
Using Slicers . 43
Summary . 45

	 3 Introduction to DAX . 47
Understanding Calculation in DAX . 47

DAX Syntax . 47
DAX Data Types . 48
DAX Operators . 50
DAX Values . 51

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

 Contents
Table of Contents . vii

viii Table of Contents

Understanding Calculated Columns and Measures . 52
Calculated Columns . 52
Measures . 55

Handling Errors in DAX Expressions . 60
Conversion Errors . 60
Arithmetical Operations . 61
Intercepting Errors . 63

Common DAX Functions . 64
Statistical Functions . 65
Logical Functions . 68
Information Functions . 69
Mathematical Functions . 70
Text Functions . 71
Date and Time Functions . 71

Summary . 72

	 4 Data Models . 73
Understanding Data Models . 74

Following the Standard Excel Method . 74
Discovering the PowerPivot Way . 79
What Is a Data Model? . 83

Understanding Physical and Logical Data Models . 85
Normalization and Denormalization . 87
Empty Values . 89

Understanding How and When to Denormalize Tables 92
The PowerPivot Query Designer . 93
When to Denormalize Tables . 99

Complex Relationships . 101
Understanding OLTP and Data Marts . 105

Data Marts, Facts, and Dimensions . 105
Star Schemas . 106
Querying the Data Warehouse . 109

Discovering Advanced Types of Relationships . 110
Role-Playing Relationships . 111
Many-to-Many Relationships . 114

Summary . 117

 Table of Contents ix

	 5 Loading Data and Models . 119
Understanding Data Sources . 119
Loading from a Database . 121

Loading from a List of Tables . 124
Loading Relationships . 126
Selecting Related Tables . 128
Loading from a SQL Query . 130
Loading from Views . 131

Opening Existing Connections . 133
Loading from Access . 134
Loading from Analysis Services . 137

Using the MDX Editor . 138
Handling of Keys in the OLAP Cube . 142

Using Linked Tables . 144
Loading from Excel Files . 148
Loading from Text Files . 151
Loading from the Clipboard . 153
Loading from a Report . 155
Loading from a Data Feed . 164
Loading from SharePoint . 166
Summary . 168

	 6 Evaluation Context and CALCULATE . 169
Understanding Evaluation Context . 169

Filter Context in a Single Table . 169
Row Context in a Single Table . 171
Adding Filters to a Filter Context for a Single Table 177
Removing Filters from a Filter Context for a Single Table 178
Row Context with Multiple Tables . 181
Filter Context with Multiple Tables . 184
Modifying Filter Context for Multiple Tables . 187
Final Considerations for Evaluation Context . 191

Understanding the CALCULATE Function . 192
Understanding the EARLIER Function . 200
Summary . 202

x Table of Contents

	 7 Date Calculations in DAX . 203
Working with a Dates Table . 203

How to Build a Dates Table . 204
Working with Multiple Dates Tables . 209
Differentiating Columns in Multiple Dates Tables 214
Calculating Working Days . 216

Aggregating and Comparing over Time . 224
Year-to-Date, Quarter-to-Date, and Month-to-Date 225
Periods from the Prior Year . 229
Difference over Previous Year . 233
Simplifying Browsing with a Period Table . 235

Closing Balance over Time . 239
Semiadditive Measures . 239
OPENINGBALANCE and CLOSINGBALANCE Functions 242
Updating Balances by Using Transactions . 246

Summary . 249

	 8 Mastering PivotTables . 251
Understanding Different Types of PivotTables . 251

File Size . 252
Handling Slicers . 253
Flattened PivotTable . 253
Comparing Features . 255

Custom Sorting in PivotTables . 255
Computing Ratios and Percentage in PivotTables . 259
Aggregating Data Without Using Sum . 262
Creating Dashboards . 266
Using Complex Queries as Linked Tables . 270
Performing Analysis of Old and New Data Together 272
Defining Sets . 277
Creating Dynamic Sets with MDX . 281
Creating Sets of Measures with MDX . 286
Summary . 288

 Table of Contents xi

	 9 PowerPivot DAX Patterns . 289
Calculating Ratio and Percentage . 289

Calculating Ratio on a Single Denormalized Table 289
Calculating Ratio on Multiple Normalized Tables 292

Computing Standard Deviation . 295
Ranking over a Measure . 297

Calculating Ranking on a Single Denormalized Table 297
Calculating Ranking in Multiple Normalized Tables 303

Computing ABC and Pareto Analyses . 304
ABC Analysis with a Single Denormalized Table 305
ABC Analysis with Multiple Normalized Tables 309
ABC with Denormalized Attributes on Normalized Tables 311

Event in Progress . 313
Summary . 316

	 10 PowerPivot Data Model Patterns . 317
Banding . 317

Banding with Band Expansion . 319
Banding with Basic DAX . 321
Banding with CALCULATE . 323

Performing Courier Simulation . 324
Loading the Main Table . 325
Adding Courier Information . 333
Using DAX to Resolve Complex Relationships 334
Using Many-to-Many Relationships . 337

Summary . 344

	 11 Publishing to SharePoint . 345
SharePoint 2010 and PowerPivot Integration . 345

PowerPivot Gallery . 349
Publishing an Excel Workbook . 351
PowerPivot Data Refresh . 355
Summary . 359

xii Table of Contents

Appendix	 DAX Functions Reference . 361
Statistical Functions . 361
Logical Functions . 362
Information Functions . 363
Mathematical Functions . 364
Text Functions . 365
Date and Time Functions . 367
Filter and Value Functions . 368
Time Intelligence Functions . 369

Index . 373

Biography . 387

What do you think of this book? We want to hear from you!
Microsoft is interested in hearing your feedback so we can continually improve our
books and learning resources for you . To participate in a brief online survey, please visit:

microsoft .com/learning/booksurvey

	 	 17

Chapter 2

PowerPivot at Work
We are now going to introduce some of the most interesting features of Microsoft SQL
Server PowerPivot for Excel. The goal of this chapter is to show the most frequently used
PowerPivot features for transforming a simple Excel workbook into a complex report that
helps you perform analysis on data. This is not yet the place for more advanced topics,
such as the DAX programming language or complex relationships. Nevertheless, after you
read this chapter, you will be able to perform complex analysis on a relational database
and—we hope—still feel the need to go forward in your reading to discover the most
advanced uses of PowerPivot.

Please note that we sometimes refer to the end user or the user experience as if we think that your
PowerPivot workbook might be used by somebody else. To make a good report, you always
need to think in this way. Even if you are the only user of a specific report, a user-friendly report
is easier to read and update even after some time has passed since its creation.

Using	the	PivotTable	to	Produce	Reports
Let us start with a very simple report, based on the same three tables that you loaded in the
previous chapter: Sales Order Header, Sales Order Detail, and Product.

If you create a PivotTable with PowerPivot and put OnlineOrderFlag and SizeUnitMeasureCode
on the Report Filter pane, Size on Column Labels, Color on Row Labels and the OrderQty as
the value to sum up, you end up with the report shown in Figure 2-1, which you can find in the
workbook named CH02-01-FirstSample.xlsx in the companion content.

FigURe	2-1	 A simple report using PowerPivot.

 Contents

 Chapter 2 . 17

 PowerPivot at Work . 17
Using the PivotTable to Produce Reports . 17

Formatting Numbers . 19
Hiding or Removing Useless Columns . 21
Adding Calculated Columns . 24
Adding Measures . 32

Adding More Tables . 34
Working with Dates . 39
Refreshing Data . 41
Using Slicers . 43
Summary . 45

18 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

Before analyzing more advanced features, let us recall briefly what is going on:

■ The OnLineOrderFlag, coming from the SalesOrderHeader table, is a TRUE/FALSE value.
PowerPivot found only two possible values for it, so it has been able to fill the combo
box of the filter with the values True and False. By choosing True, you selected only the
orders placed online.

■ The same process happened for the SizeUnitMeasureCode, this time coming from the
Product table. It can contain only two distinct values (empty and CM). You have selected
CM as the measure unit for the size.

■ Placing Color on the rows, Size on the rows, and finally OrderQty as the value,
PowerPivot analyzed all the rows containing the value (which is OrderQty, contained
in the SalesOrderDetail table). Then it followed the relationship between Order Detail
and Products and filtered out all the rows from the detail that do not satisfy the filter
condition. In the meantime, it removed all the rows that do not satisfy the condition
on the OrderHeader table, which contains the OnlineOrderFlag.

■ Having detected the set of rows that you want to analyze, PowerPivot followed the rela-
tionship between SalesOrderDetail and Product to find out the color and the size of each
product sold, summarized up all the quantities, and displayed the final PivotTable.

Do not worry if the process described here is not perfectly clear; it will become easier to
understand as you continue reading, thanks to the many examples we are going to provide.
But remember this important point: the presence of relationships is essential for PowerPivot
to detect the set of rows it must take into account from the source tables.

Important You can easily understand why relationships are an important concept in PowerPivot
when you remember this significant difference between PowerPivot and the classic Excel PivotTable:
the older tool analyzes only one table and so it does not need to relate it with anything else—its
analysis is carried on a single object. On the other hand, PowerPivot can analyze more than one
table at a time but to do that, it needs to relate the tables to produce useful results.

In the next chapters, we spend several pages in the analysis of different kinds of relationships
and how to master them. Nevertheless, before diving into complex analysis, let us solve some
minor problems in this sample report to make it more appealing and a smoother introduction
to all of the PowerPivot features.

 Chapter 2 PowerPivot at Work 19

Formatting Numbers
Even if the report shown in Figure 2-1 contains interesting information, it has a problem: it lacks
a format for numbers. In Excel worksheets, the formatting of numbers is one of the functions of
the worksheet itself. So, to format the numbers properly, you select the data area of the report
and choose a proper formatting. If you follow this procedure in a PivotTable, the first result is
not very appealing, as you can see in Figure 2-2.

FigURe	2-2	Wrong display of numbers if format strings are applied to the PivotTable.

Because you applied the formatting after you created the PivotTable, none of the columns
were large enough to accommodate the new representation of numbers, which now contain
dots and commas, resulting in larger columns. You can solve this easily by resizing all the
columns. Nevertheless, if you decide to change the measure displayed and use a different
one (for example, ListPrice), you probably need a different format and different column
sizes, and you probably have to resize the entire worksheet.

The correct procedure to follow is to use the PivotTable field settings to define a number for-
mat for the OrderQty column. To perform this, you can right-click inside a cell containing the
OrderQty value and, from the menu, choose Value Field Settings, as you can see in Figure 2-3.

FigURe	2-3	 The Value Field Settings menu.

This option opens the Value Field Settings dialog box, shown in Figure 2-4, which contains
many options. We are interested, for now, only in the number format, which you can view
by clicking the Number Format button.

20 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

FigURe	2-4	 The Value Field Settings dialog box.

The Format Cells dialog box (see Figure 2-5) lets you choose a number format for the column in
this PivotTable.

FigURe	2-5	 The Format Cells dialog box.

 Chapter 2 PowerPivot at Work 21

When you choose the number format you want (in this case, we have selected a number for-
mat with a thousand separator and no decimal places), the PivotTable resizes all the columns
automatically, as you can see in Figure 2-6.

FigURe	2-6	 The PivotTable correctly resized.

This procedure applies number formatting to the current PivotTable only. If the same column is
used somewhere else in other PivotTables, your choice in this PivotTable does not affect them.

Please note that, if you change the measure shown, you must repeat the procedure to
determine the number format of the new column used.

Hiding or Removing Useless Columns
In the process of making the report more user-friendly, you can now focus on another small
problem: the PowerPivot Field List (see Figure 2-7), from which you choose values to put on
rows and columns, shows all the columns of all the PowerPivot tables. You see a large set of
columns, many of which are not really useful.

FigURe	2-7	 The field selector.

22 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

Although it is certainly useful to see everything during the process of data discovery, several
columns distract us rather than help us. Let us see a couple of examples:

■ The column SalesOrderID in SalesOrderDetail is very useful because it makes the rela-
tionship between SalesOrderDetail and SalesOrderHeader. Nevertheless, selecting it
for reporting purposes produces no useful result. We refer to this kind of column as a
technical column—that is, a column mandatory for the data model to work but that
has no meaning at all for the reports.

■ The columns rowguid and ModifiedDate, in the SalesOrderDetail table, are columns
used by the source system that handles the database, but they do not contain any
useful information either from the technical or from the reporting point of view. We
refer to these columns as useless columns because you can easily remove them with-
out affecting the data model.

Note Please note that useless columns are not simply columns that you believe are of no use in
the current report. Columns like SpecialOfferID, which is a technical column, contain interesting
information that seems not to be useful at a certain point in time. If you plan to use the same
source for many reports, you need to think twice before tagging a column as useless and maybe
deleting it. But even if you remove a column from the PowerPivot table, you can always reload it
later by changing the table properties.

To make the user experience better, you should hide technical columns and remove useless
ones so that the names shown in the field selector refer only to columns that can be used
in the report to provide useful results. When you remove a column from a table, that col-
umn is physically deleted from the PowerPivot data model, is no longer available for any
operation, and reduces the memory and disk space taken up by the table. On the other
hand, when you hide a column, it still exists in the PowerPivot data model, although the
user cannot select it in a report. It is now clear why we choose to hide technical columns
(if we remove them, we would not be able to use them for relationship, for instance) and
remove useless ones.

To perform this task, you can open the Hide And Unhide Columns dialog box, which you
can see in Figure 2-8, from the Design tab on the ribbon of the PowerPivot window. From
here, you can choose to hide or show any columns of the table.

If you choose to hide a column in PowerPivot, it does not appear in the PowerPivot tables but
is still available in the PowerPivot Field List. This decision might help you achieve a cleaner
view of data when you are browsing in the PowerPivot window.

On the other hand, we are not interested in hiding any columns from the PowerPivot window
because we want to browse all data. We hide columns only in the PowerPivot Field List.

 Chapter 2 PowerPivot at Work 23

FigURe	2-8	Hide and unhide columns.

Note As you might have noted, there is no option that allows you to hide a full table. The
PowerPivot Field List hides a table if all of its columns are hidden in the PivotTable. Even if hiding a
table might seems useless at this point, later on you will discover several data models that contain
not only technical columns but technical tables too. For those models, the option to completely hide
a table is useful because it lets you hide the complexity of the model when you are browsing data.

After you have hidden technical columns, you still need to delete the useless ones, which are,
in our example, the two columns rowguid and ModifiedDate. To do that, you need to select
the column in the PowerPivot window and click the Delete button on the Design tab of the
ribbon. After you click it, a confirmation message box appears, like the one in Figure 2-9.

FigURe	2-9	When you delete columns, PowerPivot raises a message box.

24 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

When you delete a column, it is no longer available for any tasks inside PowerPivot. You can
still add it back later, if you edit table properties, but this effort requires that you reload the
table, which, for large tables, might be a long process.

You should consider the task to hide and delete technical and useless columns as both a
cosmetic and operational change in the PowerPivot functionality. It has some very good
impact on the usability of PowerPivot, because fewer columns are available for selection.
Moreover, the size of the Excel file is reduced by removing useless data from the tables,
speeding up all the operations.

After the cleaning of these columns, the field selector, shown in Figure 2-10, looks much
better and user friendly.

FigURe	2-10	 The field selector with fewer columns.

Adding Calculated Columns
Now that you have hidden or deleted unwanted columns, you can continue the work to make
the report easier to use and read. You might notice that there are some fields that have a techni-
cal meaning and are not easy to understand at a first glance. The OnlineOrderFlag, for example,
is one of them. OnlineOrderFlag is a TRUE/FALSE value and, even if it is pretty understandable
by itself, it does not look very nice if used in reports. Take a look, for example, at the report in
Figure 2-11, where we simply removed the OnlineOrderFlag from the filter of the report and
added it to the rows.

 Chapter 2 PowerPivot at Work 25

FigURe	2-11	 The values True and False are difficult to decode without a description.

Ask yourself this question: What do the labels False and True mean in the report? You can
assign a meaning to False only if you remember that its value comes from the OnlineOrderFlag
but, in the report itself, there is no clear evidence of the fact that the value True means The
order has been placed online. Clearly, having a different and more understandable description
would greatly improve the report readability.

Note Please note that the OnlineOrderFlag is not a technical column. Its description is cryptic,
but we definitely want to slice data using this column. So we are not going to hide the column at
all. Instead, we will provide it a better description so that the field is more user friendly.

So we are going to describe some standard techniques to show ONLINE ORDER when the
value of the column is True and INTERNAL ORDER when the value is False. In order to per-
form this task, you have two choices:

■ You can add a new calculated column to the OrderDetails table, assigning to it a descrip-
tive value for the OnlineOrderFlag. Then you can hide the TRUE/FALSE column and
provide only the new column for filtering and slicing.

■ You can add a new table to the data model, which has a TRUE/FALSE column as the
key and another column that holds the description. Then you can create a relationship
between OrderDetails and this new table to let PowerPivot slice the original data with
this new table.

Both these operations deal with a much wider topic—data modeling. Because they are both
interesting and instructive solutions, we describe both of them, first to get a feeling of what
a data model is and also to see how a good data model might affect the user experience.
We cover data models in full detail in Chapter 4, “Data Models.” Nevertheless, this first look
now is useful for understanding data models.

26 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

The first option is the easier one. To add a column to the SalesOrderHeader table, you need
to provide a name and an expression for it so that PowerPivot knows how to select that
column and how to compute its values. To add a new column, you need to select the Add
Column button on the Design tab of the PowerPivot ribbon, as you can see in Figure 2-12.
This operation moves the cursor to the end of the current table and places the cursor inside
the formula editor.

FigURe	2-12	 The Add button creates a new calculated column.

You can now write the formula for the new column in the formula bar of PowerPivot. The for-
mula bar looks very similar to the formula bar of Excel. Nevertheless, formulas for PowerPivot
are very different from formulas in Excel. PowerPivot does not use the Excel formula language.
Instead, it uses a new language called DAX, which we introduce in Chapter 3, “Introduction to
DAX.” But for this simple example, we can ignore the complexities of DAX and enter a simple
formula, which is understandable by itself (moreover, it looks similar to Excel) and is shown in
Figure 2-13.

FigURe	2-13	 The formula for the new column, shown in the formula bar.

This code uses the DAX function IF, which looks and works like the IF function in Excel. If the
value of the first parameter evaluates to True, it returns its second parameter; otherwise,
it returns the third one. In other words, if the OnlineOrderFlag is true, the formula returns
ONLINE ORDER; otherwise, its value is INTERNAL ORDER.

The newly added column has been named CalculatedColumn1 by PowerPivot, which is not
really user friendly. To rename the column, it is enough to select the column, right-click the
column name, and choose Rename from the menu, as you can see in Figure 2-14. You can
choose, for example, to name it OrderType.

 Chapter 2 PowerPivot at Work 27

FigURe	2-14	 The Rename Column option of the column menu, available with a right-click.

In Figure 2-15, you can see the final result, showing both the new column and the formula
bar for the calculated column.

FigURe	2-15	 The formula bar with the calculated column.

Now that you have a good description of the order type, you can safely hide the column
OnlineOrderFlag, which now has become a technical column. (It contains a value needed
to compute the description, but you want to browse and slice data using the description
defined in the new Order Type column and not the original value.) After you do that, you
can use the new OrderType field in a PivotTable, and the result looks like Figure 2-16.

28 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

FigURe	2-16	 Sample report with OnlineOrderFlag decoded.

You can see that no value has changed but the report is now easier to understand because
you have a clear knowledge of the meaning of the rows. In other words, the values are now
self-explanatory, so the report is easier to use.

Important Whenever you create a PowerPivot workbook, you need to remember that textual
descriptions of columns are always much easier to understand when compared to the underlying
code. It is a bad idea to use code inside PivotTables because it makes the final PivotTable harder
to use.

After you delete useless and hidden technical columns, you normally need to decode some columns
and create new ones with better descriptions. Then you need to hide the original columns to allow
users to choose only among self-describing columns.

We do not want, at this point, to investigate further how to define more complex columns
because this first technique is straightforward. We prefer to spend some time showing a
different solution to the same issue, which is to create a new related table. This second
technique is interesting to study because, in developing it, you are going to change the
data model, something you should learn as soon as possible.

There is no table in the database that provides a description for the OnlineOrderFlag, so
you need to create an Excel worksheet that contains the table and then make PowerPivot
aware of this new information. To create the table, simply type in an Excel worksheet the
information (see Figure 2-17) and then, after having selected the six cells, choose Format
As Table on the Home tab of the Excel ribbon. You can find the example in the workbook
CH02-02-Related.xlsx in the companion content.

FigURe	2-17	 Decoding table for the OnlineOrderFlag.

 Chapter 2 PowerPivot at Work 29

Now that you have an Excel table, all you need to do is to let PowerPivot know of its existence.
From the PowerPivot tab on the Excel ribbon, choose the Create Linked Table button with the
cursor inside the table (see Figure 2-18). Please note that, if the cursor is not in the table, you
need to manually provide the table boundaries, a tedious task that PowerPivot carries out for
you if the cursor is inside the table.

FigURe	2-18	 The Create Linked Table command imports an Excel table inside PowerPivot.

This operation opens the PowerPivot window in which you can see your Excel table exactly
as if it were a standard imported table. The only difference is in the small chain before its
name, indicating that this is an Excel linked table and not an imported one. The table can be
renamed a more appropriate name if you need to do that—for example, you can rename it
SalesOrderHeader_OnlineOrderFlag. You can see this in Figure 2-19.

FigURe	2-19	 The decoding table imported in PowerPivot.

Maybe the power of what we are doing is not immediately evident, so it is worth spending
some words on it. We are mixing, in the same PowerPivot model, tables coming from a SQL
database with an ad-hoc table created in Excel to suit our needs. In other words, we are
extending the existing model with our personal information. This simple fact helps us build
complex and interesting data models.

30 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

The only missing point is a relationship between the SalesOrderHeader and this new table.
To create the relationship, you need to go to the SalesOrderHeader table, choose the column
OnlineOrderFlag, and click the Create Relationship button on the Design tab of the ribbon. This
action opens a dialog box in which you describe the relationship. It should look like Figure 2-20.

FigURe	2-20	Definition of the relationship with the decoding table in PowerPivot.

In Figure 2-20, you are stating that the OnlineOrderFlag in the SalesOrderHeader table is
related to the column OnlineOrderFlag in the SalesOrderHeader_OnlineOrderFlag table.
Because the related columns have the same type (a TRUE/FALSE value), the relationship
can be created. Clicking Create is enough to make PowerPivot analyze data and create the
relationship.

Lookup	Tables
This kind of table, which contains keys and values describing them, is normally called a
Lookup Table because it allows you to give a name to a code by looking up the code in
the table.

Lookup tables are very similar to the Excel VLOOKUP functions. If, in a standard Excel
worksheet, we want to provide a description to a particular code, we might use a
VLOOKUP function in a cell that refers to a decoding area. Lookup relationships work
much the same way even if, with PowerPivot, we use relationships to create much more
complex models.

Now that you have completed the creation of a linked table and defined the relationship with
this new table, it is time to return to the PivotTable and click the Refresh button to see what
has changed (see Figure 2-21).

 Chapter 2 PowerPivot at Work 31

FigURe	2-21	 The new decoding table in the PowerPivot selector.

You now see a new table inside the Field List, named SalesOrderHeader_OnlineOrderFlag,
with two columns (one of which is a technical one that you should hide later). The Order Type
column in this new table does the same task that was accomplished by the Order Type in the
SalesOrderHeader table. The difference now is that it is much easier to change the descriptions
because they are not hard-coded in a DAX formula but contained in a table hosted inside the
Excel workbook. This means that changing the descriptions is now a simple task for anyone,
and no one has to understand what is going on with the code.

Let us stop for a few seconds and think about what you have done.

■ You have been able to mix different sources of data into a single coherent view of
information, shaping the data model to make it fit your needs.

■ You have provided your users (and yourself) an easy way to give descriptions to
technical values, making the process of browsing the PivotTable and producing
reports more intuitive.

■ You created your first piece of a data model—that is, a model of data that describes
the entities you intend to browse.

The only drawback of this solution is that, if many fields require a lookup table, the field
selector of the PivotTable might become a little messy because too many tables start to
appear inside it. Luckily, there is a simple solution to this: you can use the RELATED function
in DAX, something you are going to learn later in this chapter.

32 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

Adding Measures
Even if you can perform many interesting calculations working at the row level of the tables,
some calculations cannot be defined at this level because they depend on the query context.
(In other words, they depend on the selection made by the user in the PivotTable.)

You will explore many of these calculations later in this book (see Chapters 3, 6, 7, and 8), and
to do that, you need to learn the DAX language. But right now we want to show you a simple
example of the differences between a calculated column and a measure in PowerPivot. We
also briefly investigate why measures are sometimes needed.

You are going to implement a column that calculates the distinct count of products sold. A
distinct count computes the number of distinct values of a specific column and is very useful,
for example, for customers or products that happen to appear several times inside a table
such as SalesOrderDetails. This formula cannot be computed at the row level because, for
each sale, its value is 1 (one product sold) while, for many sales, its value is not the sum of all
the values at the row level. Instead, it needs to be computed based on user selection. Such
types of calculation cannot be defined at the row level, so they are called measures and need
to be defined at the PivotTable level.

To create a new measure, we need to right-click the PowerPivot Field List and choose Add
New Measure as in Figure 2-22. You can find this example in the companion file CH02-03-
Measures.xlsx.

FigURe	2-22	 The context menu with which you add a new measure to the PowerPivot model underlying
the PivotTable.

At this point, a new dialog box appears (see Figure 2-23) in which you need to provide the
new measure properties. Type a name for the new measure—say, DistinctProducts, and
then you need to write the DAX formula that calculates the value.

 Chapter 2 PowerPivot at Work 33

FigURe	2-23	 The dialog box in which you add a new measure to the PowerPivot model.

Although easy to read, the DAX formula actually hides much of the power of DAX. We are
not interested in understanding now the details of how it works. Let us just take a look at it:

COUNTROWS (DISTINCT (SalesOrderDetail[ProductID]))

You can read it as “count the number of rows that are in a table containing only the distinct
values of the column ProductID of the table SalesOrderDetail”. To compute the value of this
measure, PowerPivot makes the calculation in the context defined by the PivotTable query and
provides the correct distinct count of products for each cell of the PivotTable. For example, you
can produce an interesting report like the one in Figure 2-24, which computes the number of
distinct products sold, slicing data by color.

FigURe	2-24	Query of the distinct products.

34 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

As you can see, for each cell there is a calculation of the number of unique products sold.
Moreover, it is worth noting that the aggregation of distinct count is not the sum. If you look,
for example, at the row for the color Yellow, we have sold 33 distinct products with internal
orders, 22 online, but the grand total of distinct products is 34. In other words, out of 34 yellow
products sold, 22 were sold online, 33 were sold directly, and only one of them has been sold
online and not directly, thus giving you the grand total of 34. This might seems confusing at
first glance, but it is indeed the correct behavior to expect when you are using distinct counts.

From the PivotTable point of view, measures and columns look very similar even if, for what
concerns the internal engine of PowerPivot, they are completely different items. Starting in
Chapter 3, you begin to learn the DAX language and the exact difference between calculated
columns and measures.

Adding	More	Tables
All the reports shown up to now relied on three tables only, and they already have shown
some interesting data. Nevertheless, the AdventureWorks database contains a lot of other
tables that you can add to the PowerPivot data model to improve reporting. You might have
noticed, for example, that the Products table contains a ProductSubcategoryID. This column
is a key in the ProductSubcategory table, which we have not loaded yet. It happens, in turn,
that the ProductSubcategory table contains a key, called ProductCategoryID, which relates to
the ProductCategory table. This chain of relationships lets us retrieve the product category,
by means of walking two steps, from a product to its subcategory and then from the sub-
category to its category.

Graphically, the relationship can be seen in Figure 2-25.

FigURe	2-25	 The chained (or cascading) relationship between three tables.

 Chapter 2 PowerPivot at Work 35

These kinds of relationships, which appear very often in the database world, are called
chained relationships because they form a chain that you can follow from the beginning
to the end to relate many tables.

Note Please note a curious phenomenon that often appears in the world of databases. Even if
we plan to slice data by category first, then by subcategory, and finally by products, following a
very natural path, in reality the chain of the relationships is reversed, starting from the more
detailed table and going into the less detailed one. This is absolutely normal—it concerns how
data is modeled in relational databases. Throughout the book, we discover many other rela-
tionships that need to be read in this reversed way.

To make PowerPivot allow you to slice data with the columns of these new tables, you need
to import them into your data model. To do that, it is enough to repeat the loading process
you did before to import the first three tables. This time, instead of using the From Database
button, you should use the Existing Connections button, which is located on the Design tab of
the PowerPivot ribbon, as you can see in Figure 2-26. You can do this because the connection
to the database has been already saved inside the Excel workbook and you can now use it to
import all the useful tables without needing to create a new connection. You can find this
example, with the tables already loaded, in the workbook CH02-04-NewTables.xlsx.

FigURe	2-26	 The Existing Connection button opens a connection to a previously used database.

You already know that during the loading process PowerPivot detects the relationship
between Subcategory and Category. Moreover, you also know that you need to hide
technical columns (ProductSubcategoryID, ProductCategoryID) and to remove the use-
less ones (rowguid and UpdatedDate in both tables) to create a clean data model.

Now, if you try to add Category or Subcategory to the PivotTable, PowerPivot detects the
need for new relationships and, when asked to, it automatically detects the relationship
between the SubcategoryID in the Products table and the column with the same name in
the ProductSubcategory one.

36 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

Note You might wonder why PowerPivot is so good at finding relationships during the loading
of tables and did not detect the relationship between Product and ProductSubcategory, even if
this relationship is already stored in the database metadata. The reason is that, during loading
of data, PowerPivot searches for relationships among the tables it is currently loading, ignoring
tables that are already present in the PowerPivot data model. These other relationships (between
existing and new tables) need to be detected later, through the relationship-detection algorithm.

Now that you have empowered the PowerPivot data model with these two tables, you easily
can produce complex reports like the one shown in Figure 2-27, in which we mix columns
from products, categories, subcategories and orders, letting PowerPivot resolve the complex
relationships that make the browsing process possible.

FigURe	2-27	 Sample report with categories and subcategories.

The report, as it looks now, is quite nice. Nevertheless, because you are surely striving for
perfection, you notice a couple of small issues:

■ Both tables (ProductCategory and ProductSubcategory) have the same description for
the column name, as you can see in the Row Labels list in Figure 2-27. This is not very
user friendly because it is hard to understand whether you correctly put subcategory
under category or vice versa (apart, clearly, from the rule of common sense as soon as
you see wrong data).

■ ProductCategory and ProductSubcategory are separated from the Products table, even
if they are strictly related to products. In a small pivot table like this one, this is not a big
issue. However, as the data model gets larger, you should try to reduce the number of
tables shown to the user as much as possible, to make it easier to find the columns. A rule
of thumb in the Business Intelligence world dictates that you should never browse more
than 15 different tables. If you let tables spread at a speed of one table per lookup, you
reach that limit very quickly.

 Chapter 2 PowerPivot at Work 37

Although the solution of the first point is straightforward (it is enough to change the name of
the columns as displayed by PowerPivot in the PowerPivot window), the second one is much
more interesting because it lets us introduce a very simple yet powerful DAX formula: RELATED.

You are now going to remove the tables ProductCategory and ProductSubcategory from the
field list in the PivotTable editor, replacing them with two new columns in the Product table,
named Category and Subcategory. Moreover, in doing this, you will solve both the points
stated above.

The problem you need to face is that the original Product table does not contain the textual
description of category or subcategory, it only contains the ProductSubcategoryID, which is
a technical column used to create the relationship with the ProductSubcategory table. You
definitely need a way to create a calculated column in a table that contains the value of a
column in another table, following a relationship. This is exactly what the RELATED function
has been built for.

The RELATED function returns the value of a column from another table if it has a valid rela-
tionship with the current one. You can define two new columns inside the Product table
using these formulas, as shown in Table 2-1.

TAbLe	2-1	 Using	the	ReLATeD	function.
Column Formula
SubCategory =RELATED (ProductSubcategory[Name])

Category =RELATED (ProductCategory[Name])

The SubCategory calculated column contains the value of the Name column in the
ProductSubcategory table, while the Category calculated column contains the name
of the category, taken from the ProductCategory table.

Note We do not need to worry about the fact that the relationship between Products and
ProductCategory is a chained one, which makes it necessary for PowerPivot to follow two relation-
ship steps to gather the correct category value. PowerPivot already knows about the existence of
chained relationships and handles this complexity by itself.

This simple definition leads to a much better user experience because now you see two new
columns inside the Products table that hold the value of the category and subcategory. So
you can safely hide all the columns in the lookup tables (which, in turn, makes both tables
disappear from the field list). The report looks like the one in Figure 2-28.

38 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

FigURe	2-28	 Sample report with categories and subcategories tied to the product.

Although this might seem a simple enhancement, it is a very important one because it lets
us introduce the concept of Data Modeling, to which we are going to dedicate the whole
of Chapter 4. The user queries the Data Model, and the simpler it is, the better will be his
experience. One of the most complex abilities of a data modeler is to create models that,
even if complex in their implementation, look very easy to the end user.

Note Even if the original data model of AdventureWorks has two distinct tables for category and
subcategory (which is the right choice for a standard database system), the data model is much easier
to query if you hide these two tables and transform their content into columns inside the Product
table, which is exactly what you have done. By modifying the data model, you have reduced the
number of tables shown to the user and given a meaningful name to the columns.

The two tables still exist in the data model, but they are hidden from the user, who can have
access to their values through the new computed columns. This is the first sample situation in
which you use an internal data model while showing a different one to the user. You will get
acquainted with this technique because we use it throughout the book.

An interesting exercise, which we leave to you to try, is to use the RELATED function to
remove the technical table we previously used to give a description of the online order
flag. The technique is exactly the same one you used in this section and the exercise gives
you greater confidence using the RELATED function. Moreover, you should use the same
technique whenever the purpose of a table is to provide lookup values and that table is
not a part of the data model you want to show to the user.

 Chapter 2 PowerPivot at Work 39

Working	with	Dates
Up to now, you have used columns that contain a relatively small set of distinct values, such
as the color or the category of products, to slice data in the PivotTable. When, on the other
hand, a column contains a lot of distinct values, the resulting PivotTable gets harder to use.
We are now going to describe this problem in greater detail and provide a solution for it.

The SalesOrderHeader table contains a column, OrderDate, which records the date of the
order. The details in this column are important but, for the purpose of reporting, the column
contains too much information. If you simply put the OrderDate data in columns, you end
up with a report that contains all the information you need but is very difficult to read (see
Figure 2-29) because of the high fragmentation of values. In technical terms, we say that the
order date column is not a good aggregator because it does not let us focus on interesting
information. A good aggregator, on the other hand, groups together a huge number of
distinct elements of information, leading to interesting results. You can find this example
in the workbook CH02-05-WorkingWithDates.xlsx.

FigURe	2-29	Date columns are not good aggregators; the report is sparse.

As you can see, browsing information at the date level produces a sparse report. A much
better aggregator would be the year or the month level. Both of those aggregators greatly
reduce the fragmentation of the report and result in a better understanding of the data.

PowerPivot can aggregate data, but to do that, it needs columns. So you need to add new
columns to the SalesOrderHeader table that contains the year and to the table that contains
the month of the order. Aggregating for these columns produces the result you want.

Note As you can see, we are shifting our concern from the problem of the sparse report to that
of adding new calculated columns, and because we already know how to add new calculated
columns, we are now finding our way to the solution of our problem.

You can add two new calculated columns to the SalesOrderHeader table in the PowerPivot
window, following the already described procedure, and use Table 2-2 to get the formulas.

40 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

TAbLe	2-2	 Using	the	date/time	functions.
Column Formula
Order Year =YEAR (SalesOrderHeader[OrderDate])

Order Month =MONTH (SalesOrderHeader[OrderDate])

You are using two DAX functions: YEAR and MONTH, which, as their name suggests, return
the year and the month of the date they receive as the parameter. Now you have two new
columns that let you slice the data by year and month. You can use these columns to produce
interesting reports, like the one in Figure 2-30, which aggregates at the year level.

FigURe	2-30	 Aggregating by year produces more interesting reports.

Or combining month and years, you can produce the report shown in Figure 2-31.

FigURe	2-31	 Combining years and months on the same report.

 Chapter 2 PowerPivot at Work 41

You might have noticed that the report shows the numbers of the months and not their names,
which surely needs to be fixed. In Chapter 7, “Date Calculations in DAX,” where we cover date
handling in much more detail, you learn how to show the month names. Nevertheless, faster
help comes in Chapter 3, where you find a “Date and Time Functions” section with a list of the
functions available to you for manipulating dates. You also find in Chapter 3 a simple formula
for getting both the number and the name of a month from a date.

The technique of adding more columns to the table to produce aggregates when the data
inside the table is too detailed is frequently used with dates. Moreover, dates are so important
a topic in the BI analysis that we will spend all of Chapter 7 on it. That said, there are many
columns that are not good aggregators. For example, in Chapter 10, “PowerPivot Data Model
Patterns,” you see a complete banding system that performs aggregations by price bands and,
as you will learn, the technique is similar to the one we just used: whenever a column is not a
good aggregator, you need to add new columns that group more data so that aggregated
values get interesting.

Refreshing	Data
Now that we have scratched the surface of some of the many PowerPivot features, it is time
to understand what happens to your reports when the underlying data changes, something
that happens rapidly because of the normal life cycle of data.

A report is nothing but an Excel file with a PivotTable that queries data and provides interesting
results. Our current model is already a good source that produces nice reports like the one
in Figure 2-32. As you might notice, we used the date year and month in columns, so we can
expect this report to change over time.

FigURe	2-32	 A report that contains current dates probably needs to be refreshed periodically.

42 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

You probably want to produce reports like this one and then refresh their values periodically to
get the newest data and cover the latest periods in time. Nevertheless, when you import data
to PowerPivot, you do not create a live link between the source table and the Excel workbook.
Instead, you copy data to PowerPivot, which stores the information in its columnar database
and works separately from the original data source. For this reason, if you want to refresh data,
you need to reload the information directly from the source.

To reload data, you need to click the Refresh button on the Home tab of the PowerPivot
ribbon, shown in Figure 2-33.

FigURe	2-33	 To refresh data, we need to use the PowerPivot window.

Because refreshing a table really means reloading it from the database, it can sometimes take
time. It is a pretty fast operation for small tables (less than one million rows, for instance), but
it gets more time-consuming as the table becomes larger.

Note This PowerPivot operation works very differently from the behavior of an Excel PivotTable
linked to a SQL Server Analysis Services database. When you connect Excel to Analysis Services,
Excel stores only the results, not the original data. So whenever the underlying dataset in the
Analysis Services database changes, you can simply refresh the PivotTable to make Excel query
the database again and retrieve the new information. The basic difference is that a PowerPivot
workbook stores data whereas a classic PivotTable is just a presentation layer over data stored
somewhere else (in the example, in the Analysis Services database).

The only kind of tables that are automatically refreshed are Linked Tables—that is, tables that
exist in the Excel workbook and are imported inside PowerPivot through the Create Linked
Table button. You can switch automatic updates of linked tables on or off, using the options
available on the Linked Table tab of the PowerPivot ribbon. The option Update Mode on the
Linked Table tab is set to Automatic by default, and there are very rare cases where it might
be useful to turn it off.

 Chapter 2 PowerPivot at Work 43

Using	Slicers
So far, we have looked at PowerPivot features. Now we would like to end this chapter by dis-
cussing a standard Excel feature that is very useful when you are working with PowerPivot.
Excel 2010 can add slicers to a PivotTable. Although slicers have been introduced mainly for
PivotTables linked to PowerPivot data, they are a feature with range: you can define slicers
for PivotTables linked to Analysis Services databases or simple PivotTables linked to data in the
same Excel workbook. Because slicers are so useful for reports, it is surely worth mentioning
them in a PowerPivot book.

Slicers are graphical items that let the user easily define filters on a PivotTable. Take a look at
the report in Figure 2-34, which contains a PivotTable and a couple of slicers. You can find this
example in the workbook CH02-06-Slicers.xlsx.

FigURe	2-34	 Slicers are graphical items that perform one-click filtering.

The two slicers on the left show all the possible values of the Color and Category columns.
You can click a single cell and activate a filter for a specific value or press the Ctrl key and
click to activate the filter for multiple values. Slicers are clearly useful when a column con-
tains a small number of different values, such as color and category. Slicers for columns
that have a lot of different possible values are difficult to use. Nevertheless, because the
filtering normally happens on columns with a small number of distinct values, slicers are
graphically appealing and very easy to use.

Slicers behave exactly like filters, but they are more elegant and easier to use. It is worth
noting, moreover, that slicers can show columns that already appear in the PivotTable, as is
the case in our example for the category column. We put the category on rows, in the first
place, and then put the category on the slicers. The same column can appear in slicers and
in the report. This is a feature that standard filters of a PivotTable do not support.

44 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

Moreover, slicers have another significant difference with filters: whereas filters apply to a
single PivotTable (they are, after all, part of the query sent to the data source), slicers can
be tied to more than one PivotTable, filtering them all with a single click. Let us look at the
report in Figure 2-35.

FigURe	2-35	 Slicers can be tied to more than one PivotTable, creating interactive reports.

The upper PivotTable shows the number of items sold over time, whereas the lower one shows
a detail of the year 2004 and displays the money value of sales. It would be nice to be able to
link the slicer to both PivotTables so that we produce an interactive report in which you can
select color and category and update both PivotTables quickly.

To link a slicer to more than one PivotTable, you can move the cursor inside the PivotTable
you want to link to a slicer and then choose the Slicer Connections option from the Insert
Slicer button on the Options tab of the Excel ribbon. The dialog box in Figure 2-36 appears.

FigURe	2-36	With this dialog box, we can tie one slicer to more than one PivotTable.

 Chapter 2 PowerPivot at Work 45

You can link both slicers (Category and Color) or make a selection of which slicer to link to the
PivotTable and which ones not to use. If you link both slicers to both PivotTables, both tables
are updated to reflect the filters when you make a selection in the slicers. This simple character-
istic of slicers makes them a great option when you need to create interactive reports.

Caution Whenever you place more than one PivotTable on the same worksheet, you need to
guard against overlapping them. PivotTables, by nature, change their size depending on the selec-
tions you make. (As you change the number of categories, the PivotTable containing the categories
increases its height to accommodate the new categories selected.) If you want to place PivotTables
side by side, for example, you need to make sure that they cannot grow to the point of overlapping.
If this happens, Excel raises an error.

Summary
In this chapter, you learned some of the most useful features of PowerPivot:

■ Format strings should be set in the PivotTable field settings so that resizing of columns
is carried on by the PivotTable itself.

■ Useless columns should be deleted from the PowerPivot data model, and technical ones
should be hidden so that you have fewer columns to search to produce the report.

■ You can add simple calculated columns or use more complex functions, such as RELATED,
to enrich a table with information computed on related tables. RELATED is a very useful
function because it allows us to reduce the number of tables and move columns to loca-
tions the user expects them.

■ You created your first linked table, which enriches the original data model with other
information directly stored inside the Excel workbook.

■ You learned the basic difference between calculated columns and measures, something
we discuss in greater detail in the next chapter.

■ Whenever the data inside the data model is too detailed, you should create aggregating
columns to avoid slicing too many details. You saw a demonstration of this technique on
date columns, but it can be easily extended to other types.

■ Data that needs to be refreshed needs to be reloaded from the database because
PowerPivot tables are a copy of the original data, not a link to them. This might be
an issue with very large databases.

■ Slicers are graphical tools to make filters for one or more PivotTables. They are useful
and good looking, and they allow you to build interactive reports by combining more
than one PivotTable in the same Excel workbook.

	 	 203

Chapter 7

Date Calculations in DAX
Many analyses of data have to deal with dates. Microsoft SQL Server PowerPivot for Excel
offers a number of functions that simplify many calculations on dates that are typical in a
business scenario, but using the right function in the right way requires some explanation.
As you see in this chapter, the first step in date calculations is to create a separate Dates
table that supports most of the requirements.

Working	with	a	Dates	Table
In some examples in the previous chapters, we defined calculated columns that extracted parts
of the date that we used to group dates, such as the year and the month. This technique might
be applied to each table containing a date, but it would quickly become hard to manage. It
is better to create a separate table containing a row for each date, using the date as a key to
link that Dates table with other tables that contain data related to a date. In this way, you
obtain a model wherein all attributes about dates are included in a separate table and are
easy to access when you browse data with a PivotTable, as you can see in Figure 7-1.

FigURe	7-1	 PivotTable browsing Order data by using a Dates table named OrderDate.

A Dates table is also useful for making calculations using special DAX functions that operate
on Dates. These functions, of which DATEADD is an example, often require that all the days
in a given range exist in the data table—otherwise, a missing day might result in a wrong

 Contents

 Chapter 7 . 203

 Date Calculations in DAX . 203
Working with a Dates Table . 203

How to Build a Dates Table . 204
Working with Multiple Dates Tables . 209
Differentiating Columns in Multiple Dates Tables 214
Calculating Working Days . 216

Aggregating and Comparing over Time . 224
Year-to-Date, Quarter-to-Date, and Month-to-Date 225
Periods from the Prior Year . 229
Difference over Previous Year . 233
Simplifying Browsing with a Period Table . 235

Closing Balance over Time . 239
Semiadditive Measures . 239
OPENINGBALANCE and CLOSINGBALANCE Functions 242
Updating Balances by Using Transactions . 246

Summary . 249

204 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

calculation. You might have no sales for a day (in fact, it is pretty common to have no sales
on nonworking days), so the separate Dates table allows you to make the right calculations
without requiring any modification of the original table that contains measures to analyze.

The only side effect of this technique is that you need to create a Dates table in PowerPivot
for each date attribute you want to analyze in a single table because there can be only one
relationship between two tables in PowerPivot.

Tip Creating multiple relationships with the same lookup table is not supported in PowerPivot. For
this reason, you must duplicate the Dates table whenever you have more date columns that you
want to analyze in the same table, such as Order Date and Ship Date attributes in a Sales table.

How to Build a Dates Table
To create a Dates table in PowerPivot, you need a data source that contains at least a column
with all days included in the period of time you want to analyze. For example, if the minimum
and maximum date contained in Sales data is July 3, 2001 and July 27, 2004, respectively, the
range of dates you should consider is between January 1, 2001 and December 31, 2004. In
this way, you have all the days for all the years containing sales data.

In Chapter 3, "Introduction to DAX," you saw how to create Day, Month, and Year calculated
columns for a Calendar table that has just the Date column as existing data. However, if you
do not have an external source providing you with a valid Dates table (such as a correspond-
ing table in SQL Server), we suggest that you create all the calculated columns for a Dates
table in Excel. In this way, it will be easier to copy and paste the entire contents of that table
into a new one when you have to handle more dates—for example, Order Date and Ship
Date—in your PowerPivot model.

To create your Dates table, you can start by typing Date in a cell and 1/1/2001 in the cell
below it, as you can see in Figure 7-2.

FigURe	7-2	 Creating a Dates table in Excel.

 Chapter 7 Date Calculations in DAX 205

Then in the bottom-right corner of the cell containing the 1/1/2001 date (which is highlighted
in Figure 7-2), you can drag down until you reach the date of 12/31/2004, as you can see in
Figure 7-3.

FigURe	7-3	 Selecting end range for creating a Dates table in Excel.

At this point, you can release the mouse. You just created a list of all the days included from
the beginning of 2001 to the end of 2004. Now you can click the Date cell, click the Format
As Table button on the Home tab of the ribbon, and then confirm that your table has headers,
as you can see in Figure 7-4.

FigURe	7-4	 Confirming the range of the Table and confirming that your table has headers.

In Figure 7-5, you can see how to give the Calendar name to the table by using the text box
available on the Design tab of the Table Tools contextual tab of the Excel ribbon and how to
start adding new columns by right-clicking a cell in the table and selecting the InsertTable
Column To The Right item from the Insert context menu.

In Figure 7-6, you can see how to define a formula in an empty cell of the new column to cal-
culate the Year. After you type =YeAR(, you can click the Date column to get the right syntax
to read that column, as shown in Figure 7-6.

206 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

FigURe	7-5	 Inserting a new column in the Dates table.

FigURe	7-6	 Defining the formula for the Year column in Excel.

 Chapter 7 Date Calculations in DAX 207

At this point, you can type the closing parenthesis and then press Enter. The formula is auto-
matically copied for all the rows of the table in the same column, with the result that you can
see in Figure 7-7 (after you adjust the format of the Year column to General in case it was a
different format that you copied from the Date column).

FigURe	7-7	 The Year column calculated for all the rows.

With this technique, you can define all the columns that are useful for navigating the data
that aggregate date in several ways.

Figure 7-8 shows the final result of a complete Dates table with fiscal year starting on July 1.
You can find this table in the CH07-01-Calendar.xlsx workbook included on the companion
DVD. Table 7-1 contains the formula definitions for all of the columns.

FigURe	7-8	 A complete Dates table with fiscal year starting on July 1.

TAbLe	7-1	 Formula	definitions	for	the	Dates	table	in	excel.
Column Formula
Year =YEAR([@Date])

MonthNumber =MONTH([@Date])

Month =TEXT([@Date],"MM - mmmm")

Day =DAY([@Date])

WeekDay =TEXT([@Date],"dddd")

Quarter ="Q" & ROUNDUP(MONTH([@Date]) /3,0)

FiscalYear ="FY-" & [@Year]+IF([@MonthNumber]<7,0,1)

FiscalQuarter ="FQ" &MOD(CEILING(22+[@MonthNumber]-6-1,3)/3,4)+1

208 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

Note Table 7-1 does not include a column for week number. The table omits it because there
are several techniques for calculating the week number in a year, and different businesses have
different ways to make this calculation. More important, sometimes a week belongs to a year
that is different from the calendar year—the fiscal year, for example—even if only for a few
days of a year. In that case, you also need to define a WeekYear column that must be used for
browsing the weeks in a meaningful way. We preferred not to include a specific week calcula-
tion to keep the Dates table simple and to avoid possible confusion introducing an algorithm
that might be different than that used in your company.

Now you can import this table in PowerPivot as a linked table. The result is shown in Figure 7-9.

FigURe	7-9	 The Dates table imported in PowerPivot as a linked table.

You can see that the month name contains the month number in front of it, so December is
described as 12 – December. It is useful to have the month names automatically sorted. However,
if you want to sort month names but also want to avoid the initial number, please take a look
at the section “Custom Sorting in PivotTables” in Chapter 8, “Mastering PivotTables,” where we
describe how to sort columns of a Dates table in a PivotTable.

You might want to change the data types of some columns in the Dates table. Whenever you
import the Excel table into PowerPivot, columns like Year, MonthNumber, and Day are usually
defined as Whole Number data types. For this reason, when you select one of these columns
in the PivotTable, the selected attribute is placed by default in the Values area of the PivotTable
and is aggregated when you use the Sum function. You might prefer to change the data types
of these columns to Text so that by default they are used to group data in rows.

If you want to test your new Calendar table, you should now import the SalesOrderHeader,
SalesOrderDetail, Customer, and Product tables from the AdventureWorks database into
the same PowerPivot model. Relationships between these tables are automatically detected
during the import. At this point, you need to create a relationship between the OrderDate
field of the SalesOrderHeader table and the Date field of the Calendar table you just imported.
Before starting, in PowerPivot you have to rename the Calendar table to OrderDate so that
it expresses the dates it represents. Then you click the Create Relationship button on the
Design tab of the ribbon and fill in the dialog box, as shown in Figure 7-10.

 Chapter 7 Date Calculations in DAX 209

FigURe	7-10	 Create a relationship between the SalesOrderHeader and OrderDate tables.

At this point, the model is ready to browse data, as you saw at the beginning of this chapter,
in Figure 7-1.

Working with Multiple Dates Tables
In the model you saw in the previous section, each Order has several dates. In case you want
to analyze not only the Order Date but also the Ship Date, you need to define a second table
in PowerPivot because the same table (that is, the Dates table) cannot have more than one
relationship with a given table (SalesOrderHeader).

At this point, you have two options. You can either create a new linked table starting from the
same table you used before (shown in Figure 7-8) or copy that table into Excel and create the
linked table starting from this copy. The first option is not the best one because in PowerPivot
you can have only one linked table for a given Excel table. If you try to create a linked table
starting from the same Calendar table you defined before, the warning message shown in
Figure 7-11 appears.

FigURe	7-11	 A warning against trying to create a linked table for an Excel table already used as a linked table.

210 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

If you continue creating a linked table this way, you cannot update the OrderDate table
anymore. If you create a model that must be refreshed over time and that is likely to have
a life cycle longer than the current year, you are better off using another way, which allows
future updates.

The second option requires you to copy and paste the existing Calendar table in Excel. Before
you do that, you should rename the Calendar table in Excel, using the same name we used
for the corresponding linked table in PowerPivot, which is OrderDate. To do that, you can
type the OrderDate name into the Table Name text box available on the Design tab of the
Table Tools contextual tab of the Excel ribbon, as you can see in Figure 7-12.

FigURe	7-12	 Renaming the table OrderDate, in Excel.

At this point, if you try to Update the OrderDate linked table in PowerPivot, you get the error
message shown in Figure 7-13.

FigURe	7-13	 The error message you get when you try to update OrderDate after changing the name of the
underlying Excel table.

When you click the Options button, you can select the Change Excel Table Name option.
Then you choose the OrderDate table in the combo box that shows the available tables in
Excel, as you can see in Figure 7-14.

 Chapter 7 Date Calculations in DAX 211

FigURe	7-14	 Fixing the error in LinkedTable by selecting the correct underlying Excel table.

Now you can copy the OrderDate table in Excel into a new one that we call ShipDate. You
might do this by selecting the whole table, copying it, and then pasting it into an empty space
of your Excel workbook. However, another option is to use a single dedicated Excel worksheet
for each table like these so that you can simply duplicate the worksheet into a new one. In this
way, whenever you need to add columns or rows to the table, you never have to move other
existing tables. Moreover, tables are easily accessible when you click the corresponding work-
sheet name in Excel.

To create a copy of the worksheet containing the OrderDate table, you have to right-click
the OrderDate label and select Move Or Copy from the context menu that you can see in
Figure 7-15.

FigURe	7-15	 Choosing Move Or Copy from the context menu.

212 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

The selection displays the dialog box shown in Figure 7-16, in which you have to select the
Create A Copy check box and choose the position of the new sheet.

FigURe	7-16	 Selecting the option to create a copy of the worksheet to place at the end of the list.

At this point, you rename both the table (using the same procedure you saw already in Figure
7-12) and the worksheet (by right-clicking on the OrderDate (2) label and then selecting Rename
from the context menu that you can see in Figure 7-17); you use the new ShipDate name.

FigURe	7-17	 The Rename option in the context menu.

Finally, you can create a linked table for the ShipDate table by clicking the Create Linked Table
button on the PowerPivot ribbon. Again, you have to create a relationship in PowerPivot
between the SalesOrderHeader and ShipDate tables, by using the ShipDate column of the
SalesOrderHeader table this time, as you can see in Figure 7-18.

 Chapter 7 Date Calculations in DAX 213

FigURe	7-18	 Creating a relationship between the SalesOrderHeader and OrderDate tables.

You can find the resulting model in the CH07-02-OrderAndShippingDate.xlsx workbook included
on the companion DVD. However, as you can see in the next section, duplicating tables might
not be enough. Because Excel does not show the table name to which a column belongs when
you use it for Slicers and Filters, you might want to add a prefix to your columns. It is better to
do that directly in the source Excel table rather than renaming the columns in PowerPivot only so
that the overall model is simpler to understand.

Dates	Columns	in	Different	Tables
You must define a separate Dates table to distinguish the semantics of different dates
in your data. This is certainly true whenever different date columns belong to the same
table, as in the case of the OrderDate and ShipDate columns in the SalesOrderHeader
table. However, when you have dates columns in different tables, you have to evaluate
whether the semantics of these dates is the same or not.

Every time you have a different role for a date, you have to create separate Dates tables
to browse data, just as you saw in this section. On the other hand, you have to use the
same Dates table whenever these dates have the same meaning, at least for your analysis.

For example, if you have an OrderDate in the Sales table and a CallDate in a CallCenterCalls
table, you might decide to create two separate data tables named OrderDate and CallDate.
But you might also want to create a single Dates table that connects both events, which
would ease the browsing over time of data from both tables in the same report. If you
have no other dates in your model, no ambiguities arise from that arrangement, but if
there are other dates involved in the same model, you should consider a separate model
for doing correlation analysis, avoiding misleading names in your model.

214 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

Differentiating Columns in Multiple Dates Tables
Duplicating the same table, such as a Dates table, multiple times in a PowerPivot model
makes the resulting PivotTable difficult to read whenever the same attributes are used from
different tables. For example, in Figure 7-19, you can see a PivotTable in which the Year from
OrderDate has been put in rows and in the first slicer, and the Year from ShipDate has been
put in columns and in the second slicer. The problem is that there is no evidence of the
table that a column belongs to whenever it is moved into slicers, filters, rows, or columns
of the PivotTable. The final model for the example of this section is available in the
CH07-03-PrefixedDateColumns.xlsx workbook included on the companion DVD.

FigURe	7-19	 Columns with the same name from different tables are not recognizable in a PivotTable.

So in case you create a model with multiple copies of the same tables, you should differentiate
the names of the columns so that they are immediately recognizable in a report. You can edit the
table names in Excel by adding a prefix to each column. In Figure 7-20, you can see the heading
of the OrderDate table, wherein each column has been prefixed with the word Order. You can
do the same for the ShipDate column by using the Ship prefix.

FigURe	7-20	 The columns of OrderDate prefixed with Order.

 Chapter 7 Date Calculations in DAX 215

broken	Relationships	After	Columns	Are	Renamed
Renaming a column that is part of a relationship breaks that relationship. For example,
if you try to update the linked tables after renaming the Date columns, you receive the
error message shown in Figure 7-21. The existing relationships were based on a column
(Date) that does not exist anymore.

FigURe	7-21	 Relationships lost when a column is renamed.

In this example, you need to re-create the relationships between SalesOrderHeader
and the OrderDate and ShipDate tables (through the columns OrderDate and ShipDate,
respectively). In Figure 7-22, you can see the definition of the relationship for OrderDate;
the one for ShipDate simply uses the corresponding names for the lookup table name
and columns used to define the relationships.

FigURe	7-22	 Recreating relationships by using the new lookup column name.

216 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

After you rename your column, you can create a report similar to the one you saw in Figure
7-19, but this time, use more meaningful names for columns that were ambiguous before.
You can see the result of such a process in Figure 7-23.

FigURe	7-23	 Column prefixes are more recognizable both in the slicers and in the PowerPivot Field List.

We suggest that you use column prefixes every time you have the same column name in
different tables—not just for Dates tables.

Calculating Working Days
Now that you have learned how to create a calendar table, it is worth pointing out some
columns that can be very useful in data analysis and that can be conveniently stored in
the calendar table. For example, you might be interested in defining a measure that calcu-
lates the average of sales per working days in a given period. (You can find the complete
example in the CH07-04-WorkingDays.xlsx workbook included on the companion DVD.) To
do that, you have to calculate the number of working days, which in turn requires knowing
whether a day is a working day. The simpler way to do this is to add a WorkingDays column
to the Excel OrderDate table. That column should have the value 1 for working days, and
0 for holidays, weekends, and other nonworking days. Instead of compiling this column by
hand, you might define it by using the following Excel formula that assigns 1 to all week
days between Monday and Friday, leaving 0 to Saturday and Sunday:

= IF(WEEKDAY([@Date],2) > 5, 0, 1)

 Chapter 7 Date Calculations in DAX 217

Tip You might want to use a separate NonWorkingDays table to configure the working days in
the week. In that case, you use the VLOOKUP Excel function in the preceding expression. You see
a similar example later in this section, when we discuss how to create a table that defines public
holidays that must be differentiated from working days.

This formula is automatically copied into all the rows of the OrderDate table, as you can see
in Figure 7-24.

FigURe	7-24	 The WorkingDays column added to the OrderDate table in Excel.

You can modify single values for other nonworking days, such as public holidays, overriding the
formula with a forced fixed value (usually 0) just for these days. For example, in Figure 7-25, you
can see the value for January 1, 2001 overridden by a 0 value, whereas the following dates are
still evaluated by the formula we defined before.

FigURe	7-25	 The value 0 overriding the formula for January 1, 2001.

Note The warning shown in Figure 7-25 to the left of cell J2 indicates a possible inconsistency in
a column that contains a formula. You can click the Ignore Error item in the context menu to turn
off the warning.

You can update the OrderDate linked table in PowerPivot, and the WorkingDays column
shows up in the PivotTable too. At this point, you can define a measure belonging to the
SalesOrderDetail table named DailySales, which divides the sum of LineTotal by the sum
of working days, as you can see in Figure 7-26.

218 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

FigURe	7-26	 The definition of DailySales measure.

The final result is shown in Figure 7-27, where both WorkingDays and DailySales measures are
exposed in the PivotTable. However, in a real report, you usually do not show the working days
number but just the average measures, such as Daily Sales.

FigURe	7-27	 PivotTable showing results for WorkingDays and DailySales.

 Chapter 7 Date Calculations in DAX 219

Working	Days	in	Different	Countries
In the examples included in this section, we are making some wrong assumptions for
a database like AdventureWorks, but that might be good for your own data. In fact,
because we are accounting for sales in stores located in different countries, we should
consider a different number of working days for each of these countries. This would make
the DailySales measure harder to calculate. In fact, we should accomplish all this as well:

■ Define a separate table to calculate working days, based on country and date.

■ Make a calculation of the required DailySales average by country.

■ Aggregate that number for all countries by using a weighted average based
on the sales amount for that country in a given period.

Although this calculation is still possible, it is very complex and it is seldom used because
this measure is probably not the same for different countries in the same report.

Our technique up to now is really error prone because we write directly into a cell a value of 0
to indicate a holiday, without any further explanation. If we make an error, it is really hard to
identify; furthermore, we make no distinction between weekend days (which are automatically
calculated) and holidays. A better solution is to define a separate Holidays table, which is easier
to check and to maintain because it moves into a single calculated column the logic to merge
weekend evaluation and holiday definition using a single formula. In Figure 7-28, you can see
such a Holidays table, defined in Excel.

FigURe	7-28	Holidays table in Excel.

You can import this Holidays table as a linked table in PowerPivot and define a relationship
between the OrderDate and Holidays tables, as shown in Figure 7-29.

220 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

FigURe	7-29	 The relationship between the OrderDate and Holidays tables.

You can remove the WorkingDays column because you are moving the whole logic
into PowerPivot. Because you need to use the RELATE function to get holiday infor-
mation in PowerPivot, you should move all the business logic into one simple place:
avoid splitting it half and half between Excel and and PowerPivot. After you update
the OrderDate table in PowerPivot by removing the WorkingDays data column, you
can define a new WorkingDays calculated column by using the DAX formula that
you can see in Figure 7-30.

FigURe	7-30	 The WorkingDays calculated column in the OrderDate table.

Let us examine the DAX formula in Figure 7-30. First of all, you can see a new Holiday
calculated column defined by the following formula:

Holiday = IF(ISBLANK(RELATED(Holidays[Date])), FALSE, TRUE)

The Holiday column has a TRUE value for every day that corresponds to a holiday in the
Holidays table. Using this information, we extend the previously defined Excel formula
that considers whether a nonworking day is a Saturday, a Sunday, or a holiday by using
the following DAX formula:

WorkingDays = IF(WEEKDAY(OrderDate[Date], 2) > 5 || OrderDate[Holiday],
 0, 1)

 Chapter 7 Date Calculations in DAX 221

Tip Remember that the || operator corresponds to the OR Boolean operator, which also can be
written using the OR function, both in PowerPivot and Excel.

Finally, you can browse data with the right calculation of WorkingDays, according to the Holidays
table we included in the model. In Figure 7-31, you can see the resulting PivotTable, which you can
find along with the complete model in the CH07-05-WorkingDays-HolidaysTable.xlsx workbook
included on the companion DVD.

FigURe	7-31	 The PivotTable showing final results using the Holidays table support.

Another common calculation involving working days is the delta between two dates. For
example, in the SalesOrderHeader table of the model used in this chapter, there are three
dates, which you can also see in Figure 7-32:

■ OrderDate: The date of the order

■ DueDate: When the customer expects the order to be delivered

■ ShipDate: The date of order shipment

222 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

FigURe	7-32	 The Dates column in the SalesOrderHeader table.

Calculating whether an order has been shipped on time seems pretty easy: you should just
compare the DueDate and ShipDate columns. However, if you consider a standard delivery
time of four working days, you should calculate how many orders have been shipped after
DueDate minus four working days. This calculation requires the support of the Dates table.
The complete model of the following example is available in the CH07-06-DeliveryDays.xlsx
workbook included on the companion DVD.

To make the calculation, we need to add a calculated column in the SalesOrderHeader table
that calculates for each order the difference (in working dates) between the two dates. You
can create a WorkingDayNumber calculated column in the Dates table that has the following
formula:

WorkingDayNumber =SUMX(FILTER(OrderDate,
 OrderDate[Date] <= EARLIER(OrderDate[Date])),
 OrderDate[WorkingDays])

This number calculates for each day the number of working days elapsed since the first date
in the Dates table. In Figure 7-33, you can see how this number is calculated for a few rows.

FigURe	7-33	 The WorkingDayNumber calculation.

At this point, you can define the number of working days between two dates using the dif-
ference of WorkingDayNumber for the correspondent dates. Because you might not want
to add too many tables to the PowerPivot model, you may reuse the same OrderDate table
already imported into the model to get the WorkingDayNumber for both DueDate and
ShipDate dates of an order. For example, this number for ShipDate can be obtained by
using the following DAX expression:

CALCULATE(VALUES(OrderDate[WorkingDayNumber]),
 FILTER(OrderDate,
 OrderDate[Date] = SalesOrderHeader[ShipDate]))

 Chapter 7 Date Calculations in DAX 223

The FILTER call filters only the ShipDate row in the OrderDate table. Using this filter, the
CALCULATE function returns the value of WorkingDayNumber for that row. The use of
VALUES grants that an error message is raised if the FILTER returns more than one row
(in which case, the filter condition contains an error).

So using this DAX expression for both ShipDate and DueDate, we can define a DueDeltaDays
calculated column in SalesOrderHeader by using the following formula:

DueDeltaDays = CALCULATE(VALUES(OrderDate[WorkingDayNumber]),
 FILTER(OrderDate,
 OrderDate[Date] = SalesOrderHeader[ShipDate])) + 4
 - CALCULATE(VALUES(OrderDate[WorkingDayNumber]),
 FILTER(OrderDate,
 OrderDate[Date] = SalesOrderHeader[DueDate]))

The DueDeltaDays column shows a positive number in the case of a delay, representing the
number of delay days. Negative numbers indicate an early delivery (measured always in days).
In Figure 7-34, you can see values for this column and for another calculated column named
DeliveryDelayDays, which displays a value only for delayed orders.

FigURe	7-34	 The DueDeltaDays and DeliveryDelayDays calculated columns in the SalesOrderHeader.

With this information, you can calculate some measures in the PivotTable, such as the ratio of
delayed deliveries:

DeliveryDelayRation = COUNT(SalesOrderHeader[DeliveryDelayDays])
 / COUNTROWS(SalesOrderHeader)

You can also calculate the average delay (in days) for delayed orders, by simply selecting the
Summarize By Average item on the DeliveryDelayDays column. In Figure 7-35, you can see a
PivotTable displaying both these measures.

224 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

FigURe	7-35	 The DeliveryDelayRatio and average of DeliveryDelayDays columns in PivotTable.

Calculating	WorkingDays	by	Using	Table	Relationships
You might wonder why we have not used table relationships to relate SalesDate and
DueDate tables with corresponding SalesDates and DueDates tables; why have we
used a more complicated DAX expression instead? We have two reasons for that. First,
we would have needed to duplicate these two tables both in Excel and in PowerPivot.
Second, the need to duplicate would have been propagated to the Holidays table too,
requiring three Holidays tables in Excel that would have been imported in three dif-
ferent linked tables in PowerPivot. You can look at an example of such a model in the
CH07-07-DeliveryDays-UsingRelationships.xlsx workbook included on the companion DVD.

Because PowerPivot does not support more than one relationship between two tables,
it follows in an indirect way that you cannot relate the same Holiday table from two or
more different tables (such as SalesDates and DueDates) if these tables are both related
to the same table (such as SalesOrderHeader), even if the relationship is through different
columns.

Aggregating	and	Comparing	over	Time
Working days calculation is only the first step in the benefits that you can obtain by using a
calendar table. In the next sections, we introduce other useful techniques. It is often required
that you analyze particular aggregations of values over time. For example, you might want to
calculate the aggregated value of a measure from the beginning of the year up to the period
you are selecting. (This is commonly called year-to-date aggregation.) You might want to look
at the Sales Amount for the month of March but also want to look at the total Sales Amount
from January to March. Having a Dates table is an important prerequisite for making this
calculation in PivotTable.

 Chapter 7 Date Calculations in DAX 225

Year-to-Date, Quarter-to-Date, and Month-to-Date
The calculation of year-to-date (YTD), quarter-to-date, (QTD) and month-to-date (MTD) are
all very similar. Obviously, month-to-date is meaningful only when you are looking at data at
the day level, whereas year-to-date and quarter-to-date calculations are often used to look
at data at the month level.

For example, in Figure 7-36, you can see the LineTotal measure aggregated by year, quarter,
and month.

FigURe	7-36	 The LineTotal measure aggregated by the corresponding period in a row.

You can calculate the year-to-date value of LineTotal for each month and quarter by using a
measure that operates on the filter context, modifying the filter context on dates for a range
that starts on January 1 and ends on the month corresponding to the calculated cell. You can
define a YtdLineTotal measure by using the following DAX formula:

YtdLineTotal = CALCULATE(SUM(SalesOrderDetail[LineTotal]),
 DATESYTD(OrderDate[Date]))

The CALCULATE function receives in its second parameter a table that contains the dates of the
year-to-date period that has to be considered in the aggregation. This set of dates is returned by
the built-in DATESYTD function, which is a Time Intelligence function that returns a list of all the
dates from the beginning of the year until the last date included in the current filter context.

226 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

You can see the new measure in action in Figure 7-37.

FigURe	7-37	 The LineTotal year-to-date measure side-by-side with a regular measure.

This approach requires that you deal with the CALCULATE function, but because this pattern
(using a CALCULATE and a DATESYTD function) is very common, PowerPivot offers a dedicated
DAX function that simplifies (and makes more readable) the syntax of the YTD calculation,
TOTALYTD:

YtdLineTotal = TOTALYTD(SUM(SalesOrderDetail[LineTotal]),
 OrderDate[Date])

As you can see, the syntax requires the hoped-for aggregation as the first parameter and
then just the date column as the second parameter. The behavior is identical to the original
measure, but the name of the TOTALYTD function immediately communicates the intention
of the formula. However, you need to know the behavior of the original CALCULATE syntax
because it allows a more complex calculation that you define later in this chapter.

 Chapter 7 Date Calculations in DAX 227

What	Date	Column	to	Use
Keep in mind that the date column that you must use when calling TOTALYTD (and
other similar functions) is the date column of the Dates table, and not the date column
of the table that is the object of analysis. In this case, the OrderDate[Date] column was
used instead of the SalesOrderHeader[OrderDate] column. If we had used the latter, the
calculation would have been wrong. You can see in Figure 7-38 the result that would
have been produced by using the following formula for the YTD measure:

YtdLineTotal = TOTALYTD(SUM(SalesOrderDetail[LineTotal]),
 SalesOrderHeader[OrderDate])

FigURe	7-38	 The wrong year-to-date calculation returns the same value as the LineTotal measure.

The problem is that the existing filter on year and month would be still applied. There
are possible workarounds that you might use, but our suggestion is to always define
and use a Dates table. Further details on the issue and possible workarounds are avail-
able in this blog post written by Kasper de Jonge: http://tinyurl.com/DaxTimeAll.

228 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

As you can for the year-to-date calculation, you can also define quarter-to-date and month-
to-date calculations with built-in functions, as in these measures:

QtdLineTotal = TOTALQTD(SUM(SalesOrderDetail[LineTotal]),
 OrderDate[Date])

MtdLineTotal = TOTALMTD(SUM(SalesOrderDetail[LineTotal]),
 OrderDate[Date])

In Figure 7-39, you can see the year-to-date and quarter-to-date measures used in a PivotTable.
Note that the quarter-to-date measure makes the year total equal to the last quarter of the year.

FigURe	7-39	 The year-to-date and quarter-to-date measures side-by-side with a regular measure.

To calculate a year-to-date measure over the fiscal year, you need to use an optional parameter
that specifies the end day of the fiscal year. For example, you can calculate the fiscal year-to-
date for LineTotal by using the following expression:

FiscalYtdLineTotal = TOTALYTD(SUM(SalesOrderDetail[LineTotal]),
 OrderDate[Date],
 “06-30”)

 Chapter 7 Date Calculations in DAX 229

The last parameter corresponds to June 30, which in our OrderDate table corresponds to the
end of the fiscal year. You can find several Time Intelligence functions that have a last, optional
YE_Date parameter for this purpose: STARTOFYEAR, ENDOFYEAR, PREVIOUSYEAR, NEXTYEAR,
DATESYTD, TOTALYTD, OPENINGBALANCEYEAR, and CLOSINGBALANCEYEAR.

Periods from the Prior Year
People commonly need to get a value from a period of the prior year (PY). This can be use-
ful for making comparisons of trends, during a period last year to the same period this year,
as you can see in the CH07-08-Aggregation.xlsx workbook included on the companion DVD.
This is the DAX expression you need to calculate that value:

PyLineTotal = CALCULATE(SUM(SalesOrderDetail[LineTotal]),
 SAMEPERIODLASTYEAR(OrderDate[Date]))

The CALCULATE function changes the filter by using the SAMEPERIODLASTYEAR function,
which returns a set of dates shifted one year back in time. The SAMEPERIODLASTYEAR
function is a specialized version of the more generic DATEADD function, which can
be used by specifying the number and type of periods to shift. For example, the same
PyLineTotal measure can be defined by this equivalent expression:

PyLineTotal = CALCULATE(SUM(SalesOrderDetail[LineTotal]),
 DATEADD(OrderDate[Date], -1, YEAR))

Sometimes you must look at the total amount of a measure for the previous year, usually
to compare it with the year-to-date total. To do that, you can use the PARALLELPERIOD
function, which is similar to DATEADD but returns the full period specified in the third
parameter instead of the partial period returned by DATEADD. The PyTotLineTotal measure
that calculates the total sum of LineTotal for the previous year can be defined this way:

PyTotLineTotal = CALCULATE(SUM(SalesOrderDetail[LineTotal]),
 PARALLELPERIOD(OrderDate[Date], -1, YEAR))

In Figure 7-40, you can see the result of the PyLineTotal and PyTotLineTotal measures. The quarters
data in 2002 for the Sum Of LineTotal column has been copied into the respective quarters of
year 2003 in the PyLineTotal column. The PyTotLineTotal simply reports for every period the
total amount of the LineTotal column for the year before.

230 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

FigURe	7-40	 Prior Year simple calculations.

When you want to calculate the year-to-date of the prior year because, typically, you want to
compare it with the current year-to-date measure, you have to mix the two techniques. Instead
of passing the OrderDate[Date] parameter to SAMEPERIODLASTYEAR, which corresponds to
the list of dates that are active in the current filter context, you can use the DATESYTD function
to make a transformation of these dates, defining the year-to-date group first. However, you
might also invert the order of these calls. In fact, the two following definitions of PyYtdLineTotal
are equivalent:

PyYtdLineTotal = CALCULATE(SUM(SalesOrderDetail[LineTotal]),
 SAMEPERIODLASTYEAR(DATESYTD(OrderDate[Date])))

PyYtdLineTotal = CALCULATE(SUM(SalesOrderDetail[LineTotal]),
 DATESYTD(SAMEPERIODLASTYEAR(OrderDate[Date])))

You can see the results of the PyYtdLineTotal in Figure 7-41. The values of YtdLineTotal are
reported for PyYtdLineTotal shifted by one year. In the same screen, you can also see the
FiscalYtdLineTotal measure that you saw at the end of the previous section: the horizontal
lines between Q2 and Q3 in that column highlight the points at which the year-to-date
calculation restarts.

FigURe	7-41	 The year-to-date calculation for Prior Year and Fiscal Year.

 Chapter 7 Date Calculations in DAX 231

Another commonly requested calculation that eliminates seasonal changes in sales is the
moving annual total (MAT), which always considers the last 12 months. For example,
the value of MatLineTotal for March 2002 is calculated by summing the range of dates
from April 2001 to March 2002. Consider the following MatLineTotal measure definition,
which calculates the moving annual total for LineTotal:

MatLineTotal = CALCULATE(SUM(SalesOrderDetail[LineTotal]),
 DATESBETWEEN(
 OrderDate[Date],
 NEXTDAY(
 SAMEPERIODLASTYEAR(
 LASTDATE(OrderDate[Date]))),
 LASTDATE(OrderDate[Date])))

The implementation of this measure requires some attention. You need to use the
DATESBETWEEN function, which returns the dates from a column included between
two specified dates. Because this calculation is always made at the day level, even if the
PivotTable is browsing data at the month level, you must calculate the first day and the
last day of the interval you want. The last day can be obtained by calling the LASTDATE
function, which returns the last date of a given column (always considering the current filter
context). Starting from this date, you can get the first day of the interval by requesting the
following day (by calling NEXTDAY) of the corresponding last date one year before. (You
can do this by using SAMEPERIODLASTYEAR, as we did before.)

In Figure 7-42, you can see a PivotTable using the moving annual total calculation. For
example, the 2003 Q2 data has been calculated by summing Q3 and Q4 of 2002, plus Q1
and Q2 of 2003. In the middle, you see the classic year-to-date calculation, which has the
same value of moving annual total only for the last period of each year (in this case Q4).

FigURe	7-42	 The moving Annual Total vs. year-to-date calculation.

232 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

Other	Aggregation	Functions	and	the	CALCULATe	Syntax
In all the examples, we have used the SUM aggregation function. You might need to use
other aggregation functions, such as AVERAGE, or more complex formulas. Whenever
you saw SUM(SalesOrderDetail[LineTotal]) in the previous example, consider that you
can always replace such expressions with another DAX formula, also by simply replacing
the aggregation function.

In case your calculation becomes more complex, you might prefer to specify that cal-
culation, which can be shared across several other measures, into a separated measure,
containing just this operation. In this way, you can avoid the duplication of the aggre-
gation function in all the formulas for measures that make special calculations for dates.

For example, you might want to calculate the weighted average price with the follow-
ing formula, assigned to measure AveragePrice:

AveragePrice = SUM(SalesOrderDetail[LineTotal]) / SUM(SalesOrderDetail[OrderQty])

You can use a direct reference to that measure, without using an aggregation func-
tion, whenever you use formulas such as CALCULATE or special Time Intelligence
functions that behave like CALCULATE, as in the year-to-date calculation defined in
YtdAveragePrice measure:

YtdAveragePrice = TOTALYTD(SalesOrderDetail[AveragePrice], OrderDate[Date])

The calculation for the prior year can be written by using the CALCULATE function:

PyAveragePrice = CALCULATE(SalesOrderDetail[AveragePrice],
 SAMEPERIODLASTYEAR(OrderDate[Date]))

In Figure 7-43, you can see the results of these formulas in a PivotTable.

FigURe	7-43	 The year-to-date and prior year calculations for Average Price.

 Chapter 7 Date Calculations in DAX 233

In case you want to make a monthly average of the total sales, you should use the
number of months in the denominator of the ratio, as in the following expression that
you can use to define the MonthlyAverage measure:

MonthlyAverage = IF(COUNTROWS(VALUES(OrderDate[Month])) > 0,
 SUM(SalesOrderDetail[LineTotal])
 / COUNTROWS(VALUES(OrderDate[Month])),
 BLANK())

Please note that this definition does not work with a selection of more than one year.
To avoid this issue, you need to create a calculated column in the OrderDate table
with a concatenation of year and month so that the distinct number of values over
a period take account also of the year and not just the month. If you do that, you
must replace that column to the Month column used in the formula above.

To make a monthly average of the year-to-date sales, you have to replace the corre-
sponding YtdLineTotal measure at the numerator and you need a CALCULATE expres-
sion at the denominator so that you can calculate the number of months included in
the year-to-date calculation:

YtdMonthlyAverage = IF(COUNTROWS(VALUES(OrderDate[Month])) > 0,
 SalesOrderDetail[YtdLineTotal]
 / CALCULATE(COUNTROWS(VALUES(OrderDate[Month])),
 DATESYTD(OrderDate[Date])),
 BLANK())

As you can see, the expression might be different according to the calculation you have
to do. You have to pay particular attention to the calculation necessary for numerators
and denominators of any ratio and average measure.

Difference over Previous Year
A common operation that compares a measure with its value in the prior year is to calculate
the difference of these values. That difference might be expressed as an absolute value or
by using a percentage, as you can see in the CH07-09-Yoy.xlsx workbook included on the
companion DVD. To make these calculations, you need the value for the prior year that you
already defined in PyLineTotal:

PyLineTotal = CALCULATE(SUM(SalesOrderDetail[LineTotal]),
 SAMEPERIODLASTYEAR(OrderDate[Date]))

The absolute difference of LineTotal over previous year (year-over-year, YOY) is a simple
subtraction. You can define a YoyLineTotal measure with the following expression:

YoyLineTotal = SUM(SalesOrderDetail[LineTotal]) - SalesOrderDetail[PyLineTotal]

234 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

You calculate the value of the selected year by using the SUM aggregation; the measure
corresponding to the value of the prior year does not need to be summed because the
aggregation is already done as part of the underlying measure expression.

The analogous calculation for comparing the year-to-date measure with a corresponding value
in the prior year is a simple subtraction of two measures, YtdLineTotal and PyYtdLineTotal,
which you saw in the previous section; we report it here just as reminder:

PyYtdLineTotal = CALCULATE(SUM(SalesOrderDetail[LineTotal]),
 SAMEPERIODLASTYEAR(DATESYTD(OrderDate[Date])))

YoyYtdLineTotal = SalesOrderDetail[YtdLineTotal] - SalesOrderDetail[PyYtdLineTotal]

Most of the time, the year-over-year difference is better expressed as a percentage in a
report. You can define this calculation by dividing YoyLineTotal by the PyLineTotal; in this
way, the difference uses the prior read value as a reference for the percentage difference
(100 percent corresponds to a value that is doubled in one year). In the following expres-
sion that defines the YoyPercLineTotal measure, the IF statement avoids a divide-by-zero
error in case there is no corresponding data in the prior year:

YoyPercLineTotal = IF(SalesOrderDetail[PyLineTotal] = 0,
 BLANK(),
 SalesOrderDetail[YoyLineTotal] / SalesOrderDetail[PyLineTotal])

A similar calculation can be made to display the percentage difference of a year-over-year
comparison for the year-to-date aggregation. You can define YoyPercYtdLineTotal by using
the following formula:

YoyPercYtdLineTotal = IF(SalesOrderDetail[PyYtdLineTotal] = 0,
 BLANK(),
 SalesOrderDetail[YoYYtdLineTotal]
 / SalesOrderDetail[PyYtdLineTotal])

In Figure 7-44, you can see the results of these measures in a PivotTable.

FigURe	7-44	 The year-over-year (YOY) measures used in a PivotTable.

 Chapter 7 Date Calculations in DAX 235

Simplifying Browsing with a Period Table
In this chapter, you have seen how to create single measures with special calculations over
time, such as year-to-date, year-over-year, and so on. One drawback of this approach is that
you have to define one measure for each of these calculations, and the list of the measures in
your model might grow too long.

A possible solution to this issue, which is also an interesting generic modeling solution, is to
create a special table containing one line for each of the calculations you might want to apply
to a measure. In this way, the end user has a shorter list of measures and possible operations
on them, instead of having the Cartesian product of these two sets. However, you can also see
that this solution has its own drawbacks, and maybe it is better to create just the measures you
really want to use in your model, trying to expose only the combinations of measures and
calculations that are meaningful for the expected analysis of your data.

First of all, you create a Period table in Excel, which contains the list of possible calculations
that should be applied to a measure, as you can see in Figure 7-45. The complete model
used for this example is available in the CH07-10-PeriodTable.xlsx workbook included on
the companion DVD.

FigURe	7-45	 A Period table in Excel.

The same table has to be imported as a linked table into PowerPivot. However, you do not have
to define any relationships between this table and other tables in your model because you use
the selected member of the Period table to change the behavior of a measure through its DAX
definition. Nevertheless, PowerPivot warns you of a missing relationship when you browse data
in a PivotTable, as you can see in Figure 7-46.

236 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

FigURe	7-46	 A warning about a missing relationship caused by the Period table.

This warning is provoked by the Period table, which does not have any relationships with
other tables in the model. You can disable this warning by pressing the Detection button
on the PowerPivot tab of the ribbon, which is the one highlighted in Figure 7-47.

FigURe	7-47	 The Detection button on the PowerPivot tab of the ribbon disables the detection
of missing relationships.

At this point, you can define a single measure that checks the selected value of the Period
table and uses a DAX expression to return the corresponding calculation. Because there
are no relationships with the Period table, the selected value in the Period table is always
the one chosen by the user whenever that table is used as a filter, or the selected value is
the corresponding value in a row or a column whenever Period is used in Row or Column
labels. In general, we follow this generic pattern:

= IF(COUNTROWS(VALUES(Period[Period])) = 1,
 IF(VALUES(Period[Period]) = "Current", <expression>,
 IF(VALUES(Period[Period]) = "MTD", <expression>,
 …

The first condition checks that there are not multiple values active in the filter context. In
such a case, you should avoid any calculation because of the ambiguity of having multiple
active values; otherwise, you should generate an error in the calculation, instead of returning
a wrong value without warning the user. Then in the next step, each value is checked by a
different IF statement, which evaluates the correct expression corresponding to the Period
value. Assuming you have all the measures previously defined in this chapter, you need to
replace the expression tag with the corresponding specific measure. For example, you can
define a generic CalcLineTotal measure, which is used to apply one or more of the operations
described in the Period table to the LineTotal measure:

 Chapter 7 Date Calculations in DAX 237

CalcLineTotal = IF(COUNTROWS(VALUES(Period[Period])) = 1,
 IF(VALUES(Period[Period]) = "Current", SUM(SalesOrderDetail[LineTotal]),
 IF(VALUES(Period[Period]) = "MTD", SalesOrderDetail[MtdLineTotal],
 IF(VALUES(Period[Period]) = "QTD", SalesOrderDetail[QtdLineTotal],
 IF(VALUES(Period[Period]) = "YTD", SalesOrderDetail[YtdLineTotal],
 IF(VALUES(Period[Period]) = "PriorYear", SalesOrderDetail[PyLineTotal],
 IF(VALUES(Period[Period]) = "PriorYearMTD", SalesOrderDetail[PyMtdLineTotal],
 IF(VALUES(Period[Period]) = "PriorYearQTD", SalesOrderDetail[PyQtdLineTotal],
 IF(VALUES(Period[Period]) = "PriorYearYTD", SalesOrderDetail[PyYtdLineTotal],
 IF(VALUES(Period[Period]) = "DiffPriorYear", SalesOrderDetail[YoyLineTotal],
 IF(VALUES(Period[Period]) = "DiffPercPriorYear",
 SalesOrderDetail[YoyPercLineTotal],
 IF(VALUES(Period[Period]) = "DiffYTDPriorYear", SalesOrderDetail[YoyYtdLineTotal],
 IF(VALUES(Period[Period]) = "DiffPercYTDPriorYear",
 SalesOrderDetail[YoyPercYtdLineTotal],
 BLANK())))))))))))),
 BLANK())

You have to repeat this definition for each of the measures to which you want to apply
the Period calculations. You might avoid defining all the internal measures by replacing
each reference to a measure with its corresponding DAX definition. This would make
the CalcLineTotal definition longer and hard to maintain, but it is a design choice you
might follow.

Tip Remember that you cannot hide a measure from a PivotTable (you can hide only calculated
columns). So if you do not want to expose internal calculations, you should expand all the
measures included in the preceding CalcLineTotal expression.

At this point, you can browse data by using the Period values crossed with the CalcLineTotal
measure. In Figure 7-48, only the CalcLineTotal measure has been selected; the Period values
are in the columns, and a selection of years and quarters is in the rows.

FigURe	7-48	 The Period calculations applied to the CalcLineTotal measure.

238 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

As we anticipated, this solution has several drawbacks.

■ After you put Period in rows or columns, you cannot change the order of its members.
Actually, you can do this by using some Excel features, but it is not as immediate
and intuitive as moving the list of measures into the Values list in the PowerPivot
Field List panel.

■ The number format of the measure cannot change for particular calculations
requested through some Period values. For example, in Figure 7-48, you can see
that the DiffPercPriorYear and DiffPercYTDPriorYear calculations do not display the
CalcLineTotal value as a percentage because you can define a single number format
for a measure in a PivotTable. A possible workaround is to change the number for-
mat directly in Excel cells, but this change is lost as soon as you navigate into the
PivotTable.

■ If you use more than one measure in the PivotTable, you must create a set based on
column items in Excel, choosing only the combination of measures and Period values
that you really want to see in the PivotTable. You can see an example of how to create
these sets in the “Defining Sets” section of Chapter 8, “Mastering PivotTables.”

■ You have to create a specific DAX expression for each combination of Period calcula-
tions and measures that you want to support. This is not flexible and scalable as a
more generic solution could be.

You have to evaluate case by case whether or not these drawbacks make the implementation
of a Period table a good option.

Calculation	Parameters	Using	an	Unrelated	Table
In the last section, you saw us apply a technique that depends on a table in the
PowerPivot model that does not have any relationships with other tables in the same
model. In general, this technique might be useful as a way to pass information to a
measure as if it were a parameter. For example, imagine that you define a table in
Excel that contains all the integers from 1 to 10, and then you import this table into
PowerPivot, calling it SimulationParameter. At this point, you might use the value
selected in this table in the DAX expressions of your measures, using that number as
if it were a parameter passed to your formula. Moving that table into a slicer would
be a convenient way for an end user to look at results by changing the selected value.

 Chapter 7 Date Calculations in DAX 239

Closing	balance	over	Time
In a PivotTable, each cell contains the result of applying an aggregation function to a measure.
Whenever that function is SUM, the measure is called an additive measure because SUM is
applied over all dimensions. Whenever another function is applied, such as AVERAGE, MIN,
or MAX, the measure is called a nonadditive measure because an aggregation function
other than SUM is applied over all dimensions. However, it is important to note that both
for additive and nonadditive measures, the same aggregation function is always applied
over all dimensions, without exception.

Semiadditive Measures
Some measures should behave in a different way. For example, think about the balance for
a bank account. If you consider several accounts, you can calculate the total balance for an
occupation by summing up all the balances of customers grouped by occupation. However,
you cannot sum the same balance twice, and you probably have several balances of the same
account that measure it over time. For example, in Figure 7-49, you can see a Balance table
in Excel: the same account has a balance value for each date. This type of measure is called
a semiadditive measure, because it can be aggregated using SUM over some dimensions but
requires a different aggregation algorithm over other dimensions. You can find the following
example in the CH07-11-SemiAdditive.xlsx workbook included on the companion DVD.

FigURe	7-49	 The raw balance account data.

In the case of account balance data, the only dimension that cannot be summed is the Date.
With the term dimension Date, we include all the attributes of a Dates table related to the table
containing the real measures. The logic that has to be implemented for the Date attributes is to
consider only the values belonging to the last date in the evaluated period. In other words, you
must implement a logic that can produce the same results that you see in Figure 7-50.

240 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

FigURe	7-50	 The result of applying the LastBalance measure.

The LastBalance measure used in Figure 7-50 calculates the total of a quarter by using just the
last month available in that period. For each month, only the last date for that month is con-
sidered. So the total of a quarter is calculated using only the last day of that quarter. You can
define the LastBalance measure in this way:

LastBalance = CALCULATE(SUM(Balances[Balance]), LASTDATE(BalanceDate[Date]))

The definition of the LastBalance measure uses the LASTDATE function to keep just the last
date that is active in the current filter context. So only the last date in the selected period is
considered in the CALCULATE call.

As usual, you must use a separate Dates table. Remember that the last date in a period is the
last date available in the BalanceDate table (mentioned in the preceding formula) and not
the last date for which there is raw data. This might have unwanted consequences. If your
data does not have values for the last day of a month and the Dates table contains all the days
for that month, the LastBalance formula you have used returns no data (a blank value) for that
month. Consider the last two months available in the Balances table, as shown in Figure 7-51.

FigURe	7-51	 The last two months of balance account data.

 Chapter 7 Date Calculations in DAX 241

The Balances table contains a balance for each account and each last day of the month, but
for December the last day available is December 15. If the BalanceDate table contains all the
days for year 2010, including 31 days for December, the LastBalance measure tries to filter
balance data for December 31, which is not available, resulting in a PivotTable like the one
shown in Figure 7-52, where the row for December is missing.

FigURe	7-52	 December and 4th Quarter totals are missing.

A possible solution is to delete rows from the BalanceDate from December 16 through
December 31. In this way, the LastBalance measure returns values as previously shown
in Figure 7-50. Another option is to use the LASTNONBLANK function, which returns the
last date for which a particular expression is not blank. The use of this function is not
very intuitive when the Dates column and the expression you want to evaluate manage
different tables. First of all, this is a formula for a LastBalanceNonBlank measure that
works also with the BalanceDate complete with all the dates through December 31.

LastBalancaNonBlank = CALCULATE(SUM(Balances[Balance]),
 LASTNONBLANK(BalanceDate[Date],
 COUNTROWS(RELATEDTABLE(Balances))))

The preceding formula produces exactly the result you saw in Figure 7-50, without your
needing to remove rows from the BalanceDate table.

242 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

Using	FiRSTNONbLANK	and	LASTNONbLANK	Functions
The LASTNONBLANK function you have just seen has a particular behavior, shared also
by FIRSTNONBLANK. The syntax of these functions is the following one:

FIRSTNONBLANK(<column>, <expression>)
LASTNONBLANK(<column>, <expression>)

These functions return the first or last value in <column>, filtered by the current con-
text, wherein the <expression> is not blank. So these functions behave like SUMX
or similar functions in this regard. They set a row context for a value of <column>
and then evaluate the <expression> by using that row context. If <expression> and
<column> manage data of the same table, everything works fine. However, whenever
<expression> uses columns of tables other than the one to which <column> belongs,
you need to transform a row context into a filter context by using RELATEDTABLE or
CALCULATE. This is a very common situation every time you have a separate Dates
table, which is the best practice for every date-related calculation.

To get the right value for the last nonblank date for a given measure/table, you have to
use something like this:

=LASTNONBLANK(Dates[Date], CALCULATE(COUNT(Balances[Balance])))

It returns the last date (in the current filter context) for which there are values for the
Balance column in the Balances table. You can also use an equivalent formula:

=LASTNONBLANK(Dates[Date], COUNTROWS(RELATEDTABLE(Sales)))

This formula returns the last date (in the current filter context) for which there is a
related row in the Sales table.

OPENINGBALANCE and CLOSINGBALANCE Functions
DAX provides several functions to get the first and last date of a period (year, quarter, or
month) that are useful whenever you need to get that value of a selection that is smaller than
the whole period considered. For example, looking at the month level (which may be displayed
in rows), you might want to display also the value of the end of the quarter and the end of the
year in the same row, as you can see in Figure 7-53. (The examples shown in this section are
also available in the CH07-12-ClosingBalance.xlsx workbook included on the companion DVD.)

Note Please note that raw data used in this example includes balances for dates through
December 31. For this reason, the DAX function we are going to use provides complete results
because the data based on the LASTDATE function would not work if the last day of a period
(such as month, quarter, or year) were missing.

 Chapter 7 Date Calculations in DAX 243

FigURe	7-53	 The balance data at end of month, quarter, and year for each month.

The formulas used to calculate ClosingBalanceMonth, ClosingBalanceQuarter, and
ClosingBalanceYear measures are the following:

ClosingBalanceMonth = CLOSINGBALANCEMONTH(SUM(Balances[Balance]), BalanceDate[Date])
ClosingBalanceQuarter = CLOSINGBALANCEQUARTER(SUM(Balances[Balance]), BalanceDate[Date])
ClosingBalanceYear = CLOSINGBALANCEYEAR(SUM(Balances[Balance]), BalanceDate[Date])

These formulas use the LASTDATE function internally, but they operate on a set of dates that
can extend the current selection in the PivotTable. For example, the CLOSINGBALANCEYEAR
function considers the LASTDATE of Balance[Date], which is applied to the last year period of the
dates included in the filter context. So for February 2010 (and for any month or quarter of 2010),
this date is December 31, 2010. The CLOSINGBALANCEYEAR function behaves like a CALCULATE
expression using the ENDOFYEAR function as a filter. As usual, the use of CALCULATE is more
generic and flexible, but specific DAX functions like CLOSINGBALANCEYEAR better express the
intention of the measure designer. The following are measures equivalent to the ones previously
shown using CALCULATE syntax.

ClosingBalanceEOM = CALCULATE(SUM(Balances[Balance]), ENDOFMONTH(BalanceDate[Date]))
ClosingBalanceEOQ = CALCULATE(SUM(Balances[Balance]), ENDOFQUARTER(BalanceDate[Date]))
ClosingBalanceEOY = CALCULATE(SUM(Balances[Balance]), ENDOFYEAR(BalanceDate[Date]))

Tip The DAX functions OPENINGBALANCEMONTH, OPENINGBALANCEQUARTER, and
OPENINGBALANCEYEAR use the FIRSTDATE internally instead of the LASTDATE of the con-
sidered period. They correspond to the CALCULATE formula, which uses STARTOFMONTH,
STARTOFQUARTER, and STARTOFYEAR internally as its filter, respectively.

244 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

An important consideration has to be made about dates for which there is available data
in your model. You can see this if you drill down to data at the day level in the PivotTable.
Before doing that, consider the raw data set we used in this example, shown in Figure 7-54.
As you can see, there are more balances for each month. For example, in January there are
balances for days 8, 15, 22, and 31.

FigURe	7-54	 The raw balance data with more balances for each month.

Note In this example, we always have a balance value for each account, as if we took a snapshot
on a certain date for every account available, even if it has not changed its value since the previous
date. We see in the next section what to do whenever this condition is not true.

 Chapter 7 Date Calculations in DAX 245

If you browse this data at the day level in the PivotTable by using the same measures as the
previous example, you see the results shown in Figure 7-55.

FigURe	7-55	 Browsing data at the day level displays rows with no balance data.

As you can see, the measures defined to display values at the end of the period suffer an
unpleasant side effect: all the dates are visible, even those for which there are no balance
data available. If you want to display just the rows corresponding to dates with balance data
defined, you have to modify the measures, checking the existence of data in the Balances
table, in this way:

ClosingBalanceMonth2
 = IF(COUNTROWS(Balances) > 0,
 CLOSINGBALANCEMONTH(SUM(Balances[Balance]), BalanceDate[Date]),
 BLANK())

ClosingBalanceQuarter2
 = IF(COUNTROWS(Balances) > 0,
 CLOSINGBALANCEQUARTER(SUM(Balances[Balance]), BalanceDate[Date]),
 BLANK())

ClosingBalanceYear2
 = IF(COUNTROWS(Balances) > 0,
 CLOSINGBALANCEYEAR(SUM(Balances[Balance]), BalanceDate[Date]),
 BLANK())

246 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

Browsing data using these measures results in a report like the one shown in Figure 7-56.

FigURe	7-56	 Using measures that display only days for which there is balance data.

By default, the PivotTable in Excel does not display empty rows and columns. For this reason,
the days containing no balance date are not shown: all the measures used in the PivotTable
return BLANK for those days, removing them from the report.

Updating Balances by Using Transactions
The balance account model you saw in the previous section makes an important assumption:
for a given date, either data is not present at all or all the accounts have a balance value for
that date. In case an account does not have a balance value for a date that other accounts are
measured, that account is considered to have a zero balance for that date. This assumption is
good for certain data structures, which are generated by a system that makes a snapshot of
the situation (all balance accounts values) on a given date.

However, some scenarios have a different data model in which the previous assumption
is not valid. For example, consider this other way to collect data about balance accounts.
In the Balances table shown in Figure 7-57, data has been normalized by means of an
Accounts table, which can be seen on the right side of the same figure. (The model used
in this section is available in the CH07-13-ClosingTransaction.xlsx workbook included on
the companion DVD.) Moreover, you can find a balance row for an account only for dates
when a transaction made some changes in the account balance.

 Chapter 7 Date Calculations in DAX 247

FigURe	7-57	 Raw balance account data updated for transactions and not in snapshots.

As you can see, account A001 changes its value on January 1, 12, 20, and 25; account A002
changes on January 1, 14, 21, and 26; and account A003 changes on January 1, 15, 22, and 30.
There is no data at the end of month (January 31), and there is no data for all accounts on a
given date (for example, January 12 has an account balance only for account A001). So neither
LastBalance nor ClosingBalance measures we have seen before can work with this data because
their initial assumptions are not valid anymore. We must create a more complex calculation.

The basic idea is that, for each account, you must get the last nonblank date included in the
selected period. The calculation for a single account can be made by using the CALCULATE
function and by filtering data on the LASTNONBLANK date included in the period between
the first date available and the last date in the period. Notice that the date range considered
begins even outside the period: you might request the balance for February and there might
be no rows in that month, so previous dates also must be considered for the interval. You use
a SUMX function to iterate all the available accounts.

SUMX(ALL(Balances[Account]),
 CALCULATE(SUM(Balances[Balance]),
 LASTNONBLANK(DATESBETWEEN(BalanceDate[Date],
 BLANK(),
 LASTDATE(BalanceDate[Date])),
 CALCULATE(COUNT(Balances[Balance])))))

248 Microsoft PowerPivot for Excel 2010: Give Your Data Meaning

This expression calculates a value for each date in the BalanceDate table. To get the calculation
only for dates that have at least one transaction (for any account), you must make a test similar
to the one you saw already in the previous section for ClosingBalance measures. Finally, you
can define the complete LastBalanceTx measure by using this DAX formula:

LastBalanceTx
 = IF(COUNTX(BalanceDate,
 CALCULATE(COUNT(Balances[Balance]),
 ALLEXCEPT(Balances, BalanceDate[Date]))) > 0,
 SUMX(ALL(Balances[Account]),
 CALCULATE(SUM(Balances[Balance]),
 LASTNONBLANK(DATESBETWEEN(BalanceDate[Date],
 BLANK(),
 LASTDATE(BalanceDate[Date])),
 CALCULATE(COUNT(Balances[Balance]))))),
 BLANK())

This formula produces the result shown in Figure 7-58, in which you can see the balance
updated for each account (one for each column) only for days in which at least one new
balance is present in the Balances table.

FigURe	7-58	 Results of LastBalanceTx measure.

 Chapter 7 Date Calculations in DAX 249

Tip This scenario requires a particularly complex DAX calculation, which becomes much more
complicated if other tables are added to the model. The document available in the Microsoft
PowerPivot for Excel 2010 Data Analysis Expressions Sample (which can be downloaded at
http://tinyurl.com/DaxSample) shows a similar example in the Time Intelligence Functions
section involving an Inventory Scenario with two tables other than the Dates table. Take a
look at that document if you have a similar scenario.

Keep in mind that the Balances[Account] column used to make the relationship with the Accounts
table is used in the LastBalanceTx formula and should not be selected in the PivotTable. Instead
of that, you should use the Accounts[Account] column; otherwise, you could see wrong data
in the PivotTable. The reason is similar to the case for which we suggest you use a Dates table
instead of denormalizing all dates information in the same table that contains the measures.
So a best practice is to hide in PivotTable all the columns that you use to relate Balances (the
table containing measures) to other tables such as BalanceDate and Accounts (which are
the tables containing attributes for browsing data).

Summary
In this chapter, you saw how to create a Dates table for a PowerPivot model and how to use
that table to support several types of calculations: number of working days, aggregation and
comparison over time, and closing balance over time.

	Cover
	Copyright page

	Table of Contents
	Chapter 2: PowerPivot at Work
	Chapter 7: Date Calculations in DAX

